A=16500(1-0.0575)^5
A=16,500×(1−0.0575)^(5)
A=12,271.30
Answer:
The value of q that maximize the profit is q=200 units
Step-by-step explanation:
we know that
The profit is equal to the revenue minus the cost
we have
---> the revenue
---> the cost
The profit P(q) is equal to

substitute the given values



This is a vertical parabola open downward (because the leading coefficient is negative)
The vertex represent a maximum
The x-coordinate of the vertex represent the value of q that maximize the profit
The y-coordinate of the vertex represent the maximum profit
using a graphing tool
Graph the quadratic equation
The vertex is the point (200,-120)
see the attached figure
therefore
The value of q that maximize the profit is q=200 units
It's Dublin - San Juan
Departure Friday at 1:30 Pm (Dublin Time) ==> Time San Juan 9:30 (-4 Hours)
Travel time 16 Hrs ( Dub Sat at 6:30PM) & arriving San JUan on Sat at 9:30 +16;30 26 that means 2 AM (26-24)
Answer:
a. 52%
b. 40%
Step-by-step explanation:
Let A represents the event of raining on Monday and B represents the event of raining in Tuesday,
Then according to the question,
P(A) = 20% = 0.2,
P(B) = 40% = 0.4,
Here, A and B are independent events,
So, P(A∩B) = P(A) × P(B),
⇒ P(A∩B) = 0.2 × 0.4 = 0.08
We know that,
P(A∪B) = P(A) + P(B) - P(A∩B)
a. The probability it rains on Monday or Tuesday, P(A∪B) = 0.2 + 0.4 - 0.08
= 0.52
= 52%
b. The conditional probability it rains on Tuesday given that it rained on Monday,
