<span>According to my knowledge, I feel the answer is -
Particles that struck the center of the atom were repelled.
Hope this helps!
</span>
Explanation:
It is known that efficiency is denoted by
.
The given data is as follows.
= 0.82,
= (21 + 273) K = 294 K
= 200 kPa,
= 1000 kPa
Therefore, calculate the final temperature as follows.
0.82 =
= 1633 K
Final temperature in degree celsius =
= 
Now, we will calculate the entropy as follows.

For 1 mole, 
It is known that for
the value of
= 0.028 kJ/mol.
Therefore, putting the given values into the above formula as follows.

= 
= 0.0346 kJ/mol
or, = 34.6 J/mol (as 1 kJ = 1000 J)
Therefore, entropy change of ammonia is 34.6 J/mol.
Answer:
The specific heat capacity of the metal is 0.843J/g°C
Explanation:
Hello,
To determine the specific heat capacity of the metal, we have to work on the principle of heat loss by the metal is equals to heat gained by the water.
Heat gained by the metal = heat loss by water + calorimeter
Data,
Mass of metal (M1) = 512g
Mass of water (M2) = 325g
Initial temperature of the metal (T1) = 15°C
Initial temperature of water (T2) = 98°C
Final temperature of the mixture (T3) = 78°C
Specific heat capacity of metal (C1) = ?
Specific heat capacity of water (C2) = 4.184J/g°C
Heat loss = heat gain
M2C2(T2 - T3) = M1C1(T3 - T1)
325 × 4.184 × (98 - 78) = 512 × C1 × (78 - 15)
1359.8 × 20 = 512C1 × 63
27196 = 32256C1
C1 = 27196 / 32256
C1 = 0.843J/g°C
The specific heat capacity of the metal is 0.843J/g°C
Answer:
A titration
Explanation:
A common example of a titration is when we have an acid of unknown concentration, so we add a known volume of a base of known concentration. This process lets us determine the concentration of the acid.
By definition, a titration is a quantitative analysis, as we determine how much of an analyte is there in a sample. However, <u>there are quantitative analyzes which are not titrations</u>. This is why the most appropiate answer is<em> a titration</em>.
Answer:
Explanation:
In 150 ml of .06 g / ml solution , gram of iodine = 150 x .06 g = 9 g
Let volume of given concentration of .12 g / ml required be V
In volume V , gram of iodine = V x .12 g
According to question
V x .12 = 9 g
V = 9 / .12 = 75 ml
So, 75 ml of .12 g/ml will be taken and it is diluted to the volume of 150 ml to get the solution of required concentration .