The ratio can be written in parts as shown below;

Then, 60 can be divided as shown below;

25kg:35kg
Let’s look at the permutations of the letters “ABC.” We can write the letters in any of the following ways:
ABC
ACB
BAC
BCA
CBA
CAB
Since there are 3 choices for the first spot, two for the next and 1 for the last we end up with (3)(2)(1) = 6 permutations. Using the symbolism of permutations we have:

. Note that the first 3 should also be small and low like the second one but I couldn’t get that to look right.
Now let’s see how this changes if the letters are AAB. Since the two As are identical, we end up with fewer permutations.
AAB
ABA
BAA
To make the point a bit better let’s think of one A are regular and one as bold
A.
ABA and AB
A look different now because we used bold for one of the As but if we don’t do this we see that these are actual the same. If they represented a word they would be the same exact word.
So in this case the formula would be

. We use 2! In the denominator because there are 2 repeating letters. If there were three we would use 3!
Hopefully, this is enough to let you see that the answer is A. The number of permutations is limited by the number of items that are identical.
Answer:
The mean is the better method.
Step-by-step explanation:
The best way to meassure the average height is throught mean. The mean of a sample is the average of that sample's height, and it will be a good estimate for the population's average height.
The mode just finds the most frequent height. Even tough the most frequent height will influence the average height, knowing only what height is the most frequent one doesnt give you enough informtation about how the height is centrally distributed.
As for the median, it is fine to use the median of a sample to estimate the median of the population, but if you use the median to estimate the average height you may have a few issues. For example, if you include babies in your population, the babies will push the average height down a lot and they are far below te median height. This, as a result, will give you a median height of a sample way above the average height of the population, becuase median just weights every person's height the same, while average will weight extreme values more, in the sense that a small proportion of extreme values can push the average far from the median.
Proportion which can be used to represent equivalency of 3 feet in 1 yard and 12 feet in 4 yard is 3 : 1 : : 12 : 4
<h3><u>Solution:</u></h3>
Given that
There are 3 feet in one yard
And there are 12 feet in 4 yard
Number of feet in one yard = 3 that is feet : yard = 3 : 1
Number of feet in 4 yards = 12 that is feet : yard = 12 : 4
And 3 feet in 1 yard is equivalent to 12 feet in 4 yards means

That is 3 : 1 : : 12 : 4
A proportion is statement that two ratios are equal. It can be written in two ways: as two equal fractions a/b = c/d; or using a colon, a : b = c : d
Hence proportion which can be used to represent equivalency of 3 feet in 1 yard and 12 feet in 4 yard is 3 : 1 :: 12 : 4
The picture in the attached figure
we know that
a) <span>
∠1 and ∠5are congruent-----> by corresponding anglesb) </span>∠3 and ∠8------> supplementary angles (∠3 + ∠8=180°)
<span>are not congruent
c)</span>∠6 and ∠4------> supplementary angles (∠6 + ∠4=180°)
are not congruent
d) ∠8 and ∠2------> supplementary angles (∠8 + ∠2=180°)
are not congruent
e) ∠4 and ∠7-----> supplementary angles (∠4 + ∠7=180°)
are not congruent