Answer:
The air pressure in the tank is 53.9 
Solution:
As per the question:
Discharge rate, Q = 20 litres/ sec = 
(Since, 1 litre =
)
Diameter of the bore, d = 6 cm = 0.06 m
Head loss due to friction, 
Height, 
Now,
The velocity in the bore is given by:


Now, using Bernoulli's eqn:
(1)
The velocity head is given by:

Now, by using energy conservation on the surface of water on the roof and that in the tank :




Answer:
a)σ₁ = 265.2 MPa
b)σ₂ = -172.8 MPa
c)
d)Range = 438 MPa
Explanation:
Given that
Mean stress ,σm= 46.2 MPa
Stress amplitude ,σa= 219 MPa
Lets take
Maximum stress level = σ₁
Minimum stress level =σ₂
The mean stress given as


2 x 46.2 = σ₁ + σ₂
σ₁ + σ₂ = 92.4 MPa --------1
The amplitude stress given as


2 x 219 = σ₁ - σ₂
σ₁ - σ₂ = 438 MPa --------2
By adding the above equation
2 σ₁ = 530.4
σ₁ = 265.2 MPa
-σ₂ = 438 -265.2 MPa
σ₂ = -172.8 MPa
Stress ratio



Range = 265.2 MPa - ( -172.8 MPa)
Range = 438 MPa
Answer:
D. Overrule any other laws and traffic control devices.
Explanation:
Laws and traffic control devices are undoubtedly compulsory to be followed at every point in time to control traffic and other related situations. However, there are cases when certain instructions overrule these laws and traffic control devices. For example, when a traffic police is giving instructions, and though the traffic control devices too (such as traffic lights) are displaying their own preset lights to control some traffic, the instructions from the traffic police take more priority. This is because at that point in time, the instructions from the traffic control devices might not be just applicable or sufficient.
Also, in the case of instructions given by construction flaggers, these instructions have priority over those from controlling devices. This is because during construction traffic controls are redirected from the norms. Therefore, the flaggers such be given more importance.
Answer:
The correct answer is option 'c': 13.8 kNm
Explanation:
We know that moment of a force equals

The hydro static force is given by 
We know that the hydrostatic pressure on a rectangular surface in vertical position is given by 
For the given rectangular surface we have 
Thus applying the values we get force as

This pressure will act at center of pressure of the rectangular plate whose co-ordinates is given by h/3 from base
Thus applying the calculated values we get

Answer:
2.9*10^14 electrons
Explanation:
An Ampere is the flow of one Coulomb per second, so 35 μA = is 35*10^-6 C per second.
An electron has a charge of 1.6*10^-19 C.
35*10^-6 / 1.6*10^-19 = 2.9*10^14 electrons
So, with a current o 35 μA you have an aevrage of 2.9*10^14 electrons flowing past a fixed reference cross section perpendicular to the direction of flow.