47 = 50 - 3 or:
47 = Mean - 1 Standard deviation
For normal distribution it means that 4 bags represent 16 % of all samples.
4 bags ------ 16%
x bags ------ 100 %
---------------------------
4 * 100 = x * 16
16 x = 400
x = 400 : 16
x = 25
Answer: 25 bags were probably taken as samples.
If there is a 20% discount of a 250$ microwave, then price will be 200$. That is because 20% of 250 is 50, so you subtract 50 from 250, and get your answer: 200$.
Hope I was able to help. If you need any more help, please let me know and I will assist you.
Below is a labeled rectangle:
length = w + 20
we know length is 36 so we plug that in:
36 = w + 20
We need to isolate w and to do that we must subtract 20 from both sides:
(36 - 20) = w + (20 - 20)
16 = w + 0
w = 16
width is 16 feet
Hope this helped!
<span>Use the formula: r^(1/n)*[ cos( (theta+360*k)/n ) + i*sin( (theta+360*k)/n ) ] where k = 0,1,2,3,4
</span><span>First 5th root:
k = 0
r^(1/n)*[ cos( (theta+360*k)/n ) + i*sin( (theta+360*k)/n ) ]
(32)^(1/5)*[ cos( (280+360*k)/5 ) + i*sin( (280+360*k)/5 ) ]
(32)^(1/5)*[ cos( (280+360*0)/5 ) + i*sin( (280+360*0)/5 ) ]
2*[ cos( (280+360*0)/5 ) + i*sin( (280+360*0)/5 ) ]
2*[ cos( (280+0)/5 ) + i*sin( (280+0)/5 ) ]
2*[ cos( 280/5 ) + i*sin( 280/5 ) ]
2*[ cos( 56 ) + i*sin( 56 ) ]
-------------------------------------------------------------------
Second 5th root:
k = 1
r^(1/n)*[ cos( (theta+360*k)/n ) + i*sin( (theta+360*k)/n ) ]
(32)^(1/5)*[ cos( (280+360*k)/5 ) + i*sin( (280+360*k)/5 ) ]
(32)^(1/5)*[ cos( (280+360*1)/5 ) + i*sin( (280+360*1)/5 ) ]
2*[ cos( (280+360*1)/5 ) + i*sin( (280+360*1)/5 ) ]
2*[ cos( (280+360)/5 ) + i*sin( (280+360)/5 ) ]
2*[ cos( 640/5 ) + i*sin( 640/5 ) ]
2*[ cos( 128 ) + i*sin( 128 ) ]
-------------------------------------------------------------------
Third 5th root:
k = 2
r^(1/n)*[ cos( (theta+360*k)/n ) + i*sin( (theta+360*k)/n ) ]
(32)^(1/5)*[ cos( (280+360*k)/5 ) + i*sin( (280+360*k)/5 ) ]
(32)^(1/5)*[ cos( (280+360*2)/5 ) + i*sin( (280+360*2)/5 ) ]
2*[ cos( (280+360*2)/5 ) + i*sin( (280+360*2)/5 ) ]
2*[ cos( (280+720)/5 ) + i*sin( (280+720)/5 ) ]
2*[ cos( 1000/5 ) + i*sin( 1000/5 ) ]
2*[ cos( 200 ) + i*sin( 200 ) ]
-------------------------------------------------------------------
Fourth 5th root:
k = 3
r^(1/n)*[ cos( (theta+360*k)/n ) + i*sin( (theta+360*k)/n ) ]
(32)^(1/5)*[ cos( (280+360*k)/5 ) + i*sin( (280+360*k)/5 ) ]
(32)^(1/5)*[ cos( (280+360*3)/5 ) + i*sin( (280+360*3)/5 ) ]
2*[ cos( (280+360*3)/5 ) + i*sin( (280+360*3)/5 ) ]
2*[ cos( (280+1080)/5 ) + i*sin( (280+1080)/5 ) ]
2*[ cos( 1360/5 ) + i*sin( 1360/5 ) ]
2*[ cos( 272 ) + i*sin( 272 ) ]
-------------------------------------------------------------------
Fifth 5th root:
k = 4
r^(1/n)*[ cos( (theta+360*k)/n ) + i*sin( (theta+360*k)/n ) ]
(32)^(1/5)*[ cos( (280+360*k)/5 ) + i*sin( (280+360*k)/5 ) ]
(32)^(1/5)*[ cos( (280+360*4)/5 ) + i*sin( (280+360*4)/5 ) ]
2*[ cos( (280+360*4)/5 ) + i*sin( (280+360*4)/5 ) ]
2*[ cos( (280+1440)/5 ) + i*sin( (280+1440)/5 ) ]
2*[ cos( 1720/5 ) + i*sin( 1720/5 ) ]
2*[ cos( 344 ) + i*sin( 344 ) ]</span>