Answer:
<h2>See the explanation.</h2>
Step-by-step explanation:
a.
The initial length of the candle is 16 inch. It also given that, it burns with a constant rate of 0.8 inch per hour.
After one hour since the candle was lit, the length of the candle will be (16 - 0.8) = 15.2 inch.
After two hour since the candle was lit, the length of the candle will be (15.2 - 0.8) = 14.4 inch. The length of the candle after two hours can also be represented by {16 - 2(0.8)}.
Hence, the length of the candle after t hours when it was lit can be represented by the function,
.
at t = 20.
b.
The domain of the function is 0 to 20.
c.
The range is 0 to 16.
<span>The number of dollars collected can be modelled by both a linear model and an exponential model.
To calculate the number of dollars to be calculated on the 6th day based on a linear model, we recall that the formula for the equation of a line is given by (y - y1) / (x - x1) = (y2 - y1) / (x2 - x1), where (x1, y1) = (1, 2) and (x2, y2) = (3, 8)
The equation of the line representing the model = (y - 2) / (x - 1) = (8 - 2) / (3 - 1) = 6 / 2 = 3
y - 2 = 3(x - 1) = 3x - 3
y = 3x - 3 + 2 = 3x - 1
Therefore, the amount of dollars to be collected on the 6th day based on the linear model is given by y = 3(6) - 1 = 18 - 1 = $17
To calculate the number of dollars to be calculated on the 6th day based on an exponential model, we recall that the formula for exponential growth is given by y = ar^(x-1), where y is the number of dollars collected and x represent each collection day and a is the amount collected on the first day = $2.
8 = 2r^(3 - 1) = 2r^2
r^2 = 8/2 = 4
r = sqrt(4) = 2
Therefore, the amount of dollars to be collected on the 6th day based on the exponential model is given by y = 2(2)^(5 - 1) = 2(2)^4 = 2(16) = $32</span>
We have been given that Clare made $160 babysitting last summer. She put the money in a savings account that pays 3% interest per year. If Clare doesn't touch the money in her account, she can find the amount she'll have the next year by multiplying her current amount 1.03.
We are asked to write an expression for the amount of money Clare would have after 30 years if she never withdraws money from her account.
We will use exponential growth function to solve our given problem.
An exponential growth function is in form
, where
y = Final value,
a = Initial value,
r = Growth rate in decimal form,
x = Time.

We can see that initial value is $160. Upon substituting our given values in above formula, we will get:


To find amount of money in Clare's account after 30 years, we need to substitute
in our equation.

Therefore, the expression
represents the amount of money that Clare would have after 30 years.