Answer:
1131 pounds.
Step-by-step explanation:
We have been given that an unloaded truck and trailer, with the driver aboard, weighs 30,000 pounds. When fully loaded, the truck holds 26 pallets of cargo, and each of the 18 tires of the fully loaded semi-truck bears approximately 3,300 pounds.
First of all, we will find weight of 18 tires by multiplying 18 by 3,300 as:


The weight of 26 pallets would be weight of 18 tires minus weight of unloaded truck.


Now, we will divide 29,400 by 26 to find average weight of one pallet of cargo.



Therefore, the average weight of one pallet of cargo is approximately 1131 pounds.
Step-by-step explanation:

The simplest method is "brute force". Calculate each term and add them up.
∑ = 3(1) + 3(2) + 3(3) + 3(4) + 3(5)
∑ = 3 + 6 + 9 + 12 + 15
∑ = 45

∑ = (2×1)² + (2×2)² + (2×3)² + (2×4)²
∑ = 4 + 16 + 36 + 64
∑ = 120

∑ = (2×3−10) + (2×4−10) + (2×5−10) + (2×6−10)
∑ = -4 + -2 + 0 + 2
∑ = -4
4. 1 + 1/4 + 1/16 + 1/64 + 1/256
This is a geometric sequence where the first term is 1 and the common ratio is 1/4. The nth term is:
a = 1 (1/4)ⁿ⁻¹
So the series is:

5. -5 + -1 + 3 + 7 + 11
This is an arithmetic sequence where the first term is -5 and the common difference is 4. The nth term is:
a = -5 + 4(n−1)
a = -5 + 4n − 4
a = 4n − 9
So the series is:

I think the best option here is B. <span>period 2pi/3 and asymptote at x=0
</span>because period of tanx is pi so period of tan(3/2x) is pi/(3/2) = 2pi/3. I hope this can work good for you.
To apply the changes to the equation of a vertical stretch of 4 and a translation of 3 units to the right, as well as the correct answer would be choice B.
The reason for this is when you apply a vertical stretch, because it changes the y-values (which causes it to vertically stretch or appear skinnier when graphed), you would multiply 4 to f(x) which would look like 4x^2.
Then, since you have a reflection over the x-axis, you must multiply a -1 to f(x) to reflect it over the x-axis which would result in -4x^2.
Finally, it also asks to shift the graph right 3 which by moving it right, you change the x values meaning you will perform f(x-3) to achieve this (subtract the value from x when you move right, and add the value to x when you move left).
This therefore results in your answer, the new graph would be
g(x)= -4(x-3)^2 or choice B.