Answer:
B is the answer.
Step-by-step explanation:
= 
Answer:
Step-by-step explanation:
After one year
A=p(1+r/n)^nt
=2000(1+0.03/12)^12*1
=2000(1+0.0025)^12
=2000(1.0025)^12
=2000(1.0304)
=$2060.8
After two-years
A=p(1+r/n)^nt
=2060.8(1+0.03/12)^12*2
=2060.8(1+0.0025)^24
=2060.8(1.0025)^24
=2060.8(1.0618)
=$2188.157
After three years
A=p(1+r/n)^nt
=2188.157(1+0.03/12)^12*3
=2188.157(1+0.0025)^36
=2188.157(1.0025)^36
=2188.157(1.0941)
=$2394.063
The function given is a quadratic function, so the graph will be a parabola. It'll look similar to the photo attached. The minimum cost will be at the vertex of the parabola because that is its lowest point! To find the x-value of the vertex (which is what the question is looking for), use the vertex formula: x = -b/2a. The variable b is the coefficient of the x term in the function, and the variable a is the coefficient of the x² term. In this case, a = 0.125 and b = -5.
x = -(-5)/2(0.125)
x = 5/0.25
x = 20
So, 20 gas grills should be produced each day to maintain minimum costs. Hope that helps! :)
Answer:

Step-by-step explanation:
Let
represent the cost of the torch and
represent the cost of the battery.
The torch and a battery cost £2.50 altogether.

The torch costs £2.00 more than the battery.

We substitute the second equation into the first equation to get;


£2.50


The price of the battery is £0.25
We express this as a fraction of the total cost which is £2.50 to get;
