answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alex_Xolod [135]
2 years ago
6

A wheel with rotational inertia 0.04 kg•m2 and radius 0.02 m is turning at the rate of 10 revolutions per second when a friction

al torque is applied to stop it. How much work is done by the torque in stopping the wheel?
Physics
1 answer:
Rus_ich [418]2 years ago
7 0

Answer:

-78.96 J

Explanation:

The workdone by the torque in stopping the wheel = rotational kinetic energy change of wheel.

So W = 1/2I(ω₁² - ω₀²) where I = rotational inertia of wheel = 0.04 kgm², r = radius of wheel = 0.02 m, ω₀ = initial rotational speed = 10 rev/s × 2π = 62.83 rad/s, ω₁ = final rotational speed = 0 rad/s (since the wheel stops)

W = 1/2I(ω₁² - ω₀²) = 1/2 0.04 kgm² (0² - (62.83 rad/s)²) = -78.96 J  

You might be interested in
Two long, parallel wires carry unequal currents in the same direction. The ratio of the currents is 3 to 1. The magnitude of the
astraxan [27]

Answer:

3A is the larger of the two currents.

Explanation:

Let the currents in the two wires be I₁ and I₂

given:

Magnitude of the electric field, B = 4.0μT = 4.0×10⁻⁶T

Distance, R = 10cm = 0.1m

Ratio of the current = I₁ : I₂ = 3 : 1

Now, the magnitude of a magnetic field at a distance 'R' due to the current 'I' is given as

B = \frac{\mu_oI}{2\pi R}

Where \mu_o is the magnitude constant = 4π×10⁻⁷ H/m

Thus, the magnitude of a magnetic field due to I₁ will be

B_1 = \frac{\mu_oI_1}{2\pi R}

B_2 = \frac{\mu_oI_2}{2\pi R}

given,

B = B₁ - B₂ (since both the currents are in the same direction and parallel)

substituting the values of B, B₁ and B₂

we get

4.0×10⁻⁶T =  \frac{\mu_oI_1}{2\pi R} - \frac{\mu_oI_2}{2\pi R}

or

4.0×10⁻⁶T =  \frac{\mu_o}{2\pi R}\times (I_1-I_2 )

also

\frac{I_1}{I_2} = \frac{3}{1}

⇒I_1 = 3\times I_2

substituting the values in the above equation we get

4.0×10⁻⁶T =  \frac{4\pi\times 10^{-7}}{2\pi 0.1}\times (3 I_2-I_2)

⇒I_2 = 1A

also

I_1 = 3\times I_2

⇒I_1 = 3\times 1A

⇒I_1 = 3A

Hence, the larger of the two currents is 3A

3 0
2 years ago
When a vertical beam of light passes through a transparent medium, the rate at which its intensity I decreases is proportional t
antoniya [11.8K]

Answer:

Intensity of beam 18 feet below the surface is about 0.02%

Explanation:

Using Lambert's law

Let dI / dt = kI, where k is a proportionality constant, I is intensity of incident light and t is thickness of the medium

then dI / I = kdt

taking log,

ln(I) = kt + ln C

I = Ce^kt

t=0=>I=I(0)=>C=I(0)

I = I(0)e^kt

t=3 & I=0.25I(0)=>0.25=e^3k

k = ln(0.25)/3

k = -1.386/3

k = -0.4621

I = I(0)e^(-0.4621t)

I(18) = I(0)e^(-0.4621*18)

I(18) = 0.00024413I(0)

Intensity of beam 18 feet below the surface is about 0.2%

3 0
2 years ago
How much gravitational potential energy does a 45.2 kg object have when it is 21.9m above the ground?
Blizzard [7]

Answer:

Explanation:

The formula for gravitational potential energy is

Ep = m · g · h   Assuming that the acceleration is g = 10m/s²

Ep = 45.4 · 10 · 21.9 = 9,942.6 J

God is with you!!!

6 0
2 years ago
Uzupełnij zdania właściwymi sformułowaniami. Wyobraź sobie, że między linę a siodełko karuzeli łańcuchowej wmontowany jest siłom
iragen [17]

Explanation:

Here's a clearer rendering of the question requirements;

Complete the sentences with the correct wording. Imagine that a force gauge is mounted between the rope and the chain carousel saddle. If you do not touch your feet to the ground when the vehicle is stationary, the dynamometer indicates A / B. When the carousel turns, you will read C / D on the dynamometer.

A. Your weight with the saddle

C. Rope strength value

B. Your weight

D. Centripetal force value

3 0
2 years ago
Planetary orbits... are spaced more closely together as they get further from the Sun. are evenly spaced throughout the solar sy
BaLLatris [955]

Answer:

E) are almost circular, with low eccentricities.

Explanation:

Kepler's laws establish that:

All the planets revolve around the Sun in an elliptic orbit, with the Sun in one of the focus (Kepler's first law).

A planet describes equal areas in equal times (Kepler's second law).

The square of the period of a planet will be proportional to the cube of the semi-major axis of its orbit (Kepler's third law).

T^{2} = a^{3}

Where T is the period of revolution and a is the semi-major axis.

Planets orbit around the Sun in an ellipse with the Sun in one of the focus. Because of that, it is not possible to the Sun to be at the center of the orbit, as the statement on option "C" says.

However, those orbits have low eccentricities (remember that an eccentricity = 0 corresponds to a circle)

In some moments of their orbit, planets will be closer to the Sun (known as perihelion). According with Kepler's second law to complete the same area in the same time, they have to speed up at their perihelion and slow down at their aphelion (point farther from the Sun in their orbit).

Therefore, option A and B can not be true.

In the celestial sphere, the path that the Sun moves in a period of a year is called ecliptic, and planets pass very closely to that path.  

4 0
2 years ago
Other questions:
  • A small object slides along the frictionless loop-the-loop with a diameter of 3 m. what minimum speed must it have at the top of
    11·1 answer
  • Honeybees acquire a charge while flying due to friction with the air. A 100 mg bee with a charge of +23 pC experiences an electr
    7·1 answer
  • An experiment consists of determining the speed of automobiles on a highway by the use of radar equipment. The random variable i
    10·2 answers
  • A gaseous system undergoes a change in temperature and volume. What is the entropy change for a particle in this system if the f
    11·1 answer
  • A machine produces photo detectors in pairs. Tests show that the first photo detector is acceptable with probability 3/5. When t
    8·1 answer
  • At a certain instant the current flowing through a 5.0-H inductor is 3.0 A. If the energy in the inductor at this instant is inc
    15·1 answer
  • A dolphin swims due east for 1.90 km, then swims 7.20 km in the direction south of west. What are the magnitude and direction of
    15·1 answer
  • If a force of 26 N is exerted on two balls, one with a mass of 0.52 kg and the other with a mass of 0.78 kg, the ball with the m
    7·1 answer
  • Consider the position vs. time graph below for a woman's movement in a hallway. What is the woman's velocity from 4 to 5 s?
    8·1 answer
  • When 999mm is added to 100m ______ is the result​
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!