Answer is B
4 square root of 2i
Answer:
Volume = 16 unit^3
Step-by-step explanation:
Given:
- Solid lies between planes x = 0 and x = 4.
- The diagonals rum from curves y = sqrt(x) to y = -sqrt(x)
Find:
Determine the Volume bounded.
Solution:
- First we will find the projected area of the solid on the x = 0 plane.
A(x) = 0.5*(diagonal)^2
- Since the diagonal run from y = sqrt(x) to y = -sqrt(x). We have,
A(x) = 0.5*(sqrt(x) + sqrt(x) )^2
A(x) = 0.5*(4x) = 2x
- Using the Area we will integrate int the direction of x from 0 to 4 too get the volume of the solid:
V = integral(A(x)).dx
V = integral(2*x).dx
V = x^2
- Evaluate limits 0 < x < 4:
V= 16 - 0 = 16 unit^3
For every point A = (x,y) in your figure, a 180 degree counterclockwise rotation about the origin will result in a point A' = (x', y') where:
x' = x * cos(180) - y * sin(180)
y' = x * sin(180) + y * cos(180)
Happy-fun time fact: This is equivalent to using a rotation matrix from Linear Algebra!
Because a rotation is an isometry, you only have to rotate each vertex of a polygon, and then connect the respective rotated vertices to get the rotated polygon.
You can rotate a closed curve as well, but you must figure out a way to rotate the infinite number of points in the curve. We are able to do this with straight lines above due to the property of isometries, which preserves distances between points.
Answer:
Ruler: £0.90
Pencil: £0.60
Step-by-step explanation:
Ruler = x
Pencil = y
2x + y = 2.4
5x + y = 5.1
3x = 2.7
x = 0.9
y = 0.6
You need to use the angle sum of a triangle in triangle CAD to express y in term of x
for triangla CAD , y = (180 -x) /2
180 = 3x + [ (180-x)/2]
x = 36
hope this helps