Answer:
The equivalent expression is
A is correct
Step-by-step explanation:
We are given two complex number and need to multiply it. To find equivalent fraction.

Using Binomial product property: (a+b)(c+d)=ab+ad+bc+bd



Combine the like term and simplify

Hence, The equivalent expression is
Answer: We have two solutions:
1000 - 998 = 2
1001 - 999 = 2
Step-by-step explanation:
So we have the problem:
****-*** = 2
where each star is a different digit, so in this case, we have a 4 digit number minus a 3 digit number, and the difference is 2.
we know that if we have a number like 99*, we can add a number between 1 and 9 and we will have a 4-digit as a result:
So we could write this as:
1000 - 998 = 2
now, if we add one to each number, the difference will be the same, and the number of digits in each number will remain equal:
1000 - 998 + 1 - 1 = 2
(1000 + 1) - (998 + 1) = 2
1001 - 999 = 2
now, there is a trivial case where we can find other solutions where the digits can be zero, like:
0004 - 0002 = 2
But this is trivial, so we can ignore this case.
Then we have two different solutions.
14 - 9 = 5
19 - 14 = 5
24 - 19 = 5
29 - 24 = 5
It is an arithmetic sequence with differences, b = 5 and a = 9
a(n) = a + b(n - 1)
a(n) = 9 + 5(n - 1)
The answer is B
Since
is the square of x and 6x is twice the product between x and 3, the second square must be 3 squared, i.e. 9.
So, if we think of 15 as 9+6, we have

Which is the required vertex form. This form tells us imediately that the vertex is the point (3,6).
Since the leading coefficient is 1, the parabola is facing upwards (it's U shaped), so the vertex is a minimum.
Answer:
I= -20p^2 + 840p
Step-by-step explanation:
When the ticket price is $2 there are 800 passengers daily, but every $0.1 increase in ticket price the number of passengers will be decreased by 2.
You can put information into these equations of:
passenger- = (800-2x)
ticket price= p = $2 + 0.1x
Income is calculated by multiplying the number of the passenger with the ticket price. The answer will be expressed in terms of the ticket price, so we need to remove x from the passenger equation.
p= $2 +0.1x
p-$2 = 0.1x
x= 10p- $20
If p= ticket price, the function for the number of passengers it will be:
passenger = (800-2x)
passenger = 800- 2(10p- $20)
passenger =800- 20p+40
passenger =840- 20p
The function of I will be:
I= passenger x ticket price
I= 840- 20p * p
I= -20p^2 + 840p