Hay 162 refugiados en el campamento. Si hubiera mas de 162, ya no recivirian la misma racion de comida. Cada uno recive un paquete de galletas, dos paquetes de arroz y pienso k una botella y media de agua (aunque lo de el agua suene un poko ilogico).
Answer:
The amount of stock for which both brokers would charge the same commission is $2500.
Step-by-step explanation:
i) Let the amount of stock to be traded be worth $x
ii) therefore for both the brokers to charge the same commission we can write
1% of x = $25 
0.01
x = 25
x = 
The amount of stock for which both brokers would charge the same commission is $2500.
You do the implcit differentation, then solve for y' and check where this is defined.
In your case: Differentiate implicitly: 2xy + x²y' - y² - x*2yy' = 0
Solve for y': y'(x²-2xy) +2xy - y² = 0
y' = (2xy-y²) / (x²-2xy)
Check where defined: y' is not defined if the denominator becomes zero, i.e.
x² - 2xy = 0 x(x - 2y) = 0
This has formal solutions x=0 and y=x/2. Now we check whether these values are possible for the initially given definition of y:
0^2*y - 0*y^2 =? 4 0 =? 4
This is impossible, hence the function is not defined for 0, and we can disregard this.
x^2*(x/2) - x(x/2)^2 =? 4 x^3/2 - x^3/4 = 4 x^3/4 = 4 x^3=16 x^3 = 16 x = cubicroot(16)
This is a possible value for y, so we have a point where y is defined, but not y'.
The solution to all of it is hence D - { cubicroot(16) }, where D is the domain of y (which nobody has asked for in this example :-).
(Actually, the check whether 0 is in D is superfluous: If you write as solution D - { 0, cubicroot(16) }, this is also correct - only it so happens that 0 is not in D, so the set difference cannot take it out of there ...).
If someone asks for that D, you have to solve the definition for y and find that domain - I don't know of any [general] way to find the domain without solving for the explicit function).
Answer:
Cov(X, Y) =0.029.
Step-by-step explanation:
Given that :
The noise in a particular voltage signal has a constant mean of 0.9 V. that is μ = 0.9V ............(1)
Also, the two noise instances sampled τ seconds apart have a bivariate normal distribution with covariance.
0.04e–jτj/10 ............(2)
Having X and Y denoting the noise at times 3 s and 8 s, respectively, the difference of time = 8-3 = 5seconds.
That is, they are 5 seconds apart,
τ = 5 seconds..............(3)
Thus,
Cov(X, Y), for τ = 5seconds = 0.04e-5/10
= 0.04e-0.5 = 0.04/√e
= 0.04/1.6487
= 0.0292
Thus, Cov(X, Y) =0.029.
Answer:
Step-by-step explanation:
1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1
1 6 15 20 15 6 1
we use these for the expansion of (5x² + 2y³)⁶
1(5x²)⁶(2y³)⁰ + 6(5x²)⁵(2y³)¹ + 15(5x²)⁴(2y³)² + 20(5x²)³(2y³)³+ 15(5x²)²(2y³)⁴+ 6(5x²)¹(2y³)⁵ + 1(5x²)⁰(2y³)⁶
78125ₓ¹²+187500ₓ¹⁰ y³ +37500ₓ⁸y⁶+20000ₓ⁶y⁹+6000x⁴y¹²+960x²y¹⁵+2y¹⁸
a.)a = 6, b = 9. the coefficient of xᵃyᵇ ( 20000ₓ⁶y⁹) = 20000
b) a = 2, b = 15. the coefficient of xᵃyᵇ ( 960x²y¹⁵) = 960
c) a = 3, b = 12. the coefficient of xᵃyᵇ is not present
d) a = 12, b = 0 the coefficient of xᵃyᵇ ( 78125ₓ¹²) = 78125
e) a = 8, b = 9. the coefficient of xᵃyᵇ is not present