Answer: katrina will pay less interest on the 8-year non subsidized student loan
The total interest paid on the non-subsidized loan is USD 8,959
The total interest paid on the subsidized loan is USD 11,520
Step-by-step explanation:
Subsidized loan at 4.5% for 8years will be 4.5/100 × 32000 x 1/12= USD120/month, USD 1440/year. For 8 years, USD11,520
For non subsidized student loan at 3.5% will be 3.5/100 x 32000x 1/12= USD 93.33/month, USD 1,119per year and USD 8,959 for 8 years
The Given Sequence is an Arithmetic Sequence with First term = -19
⇒ a = -19
Second term is -13
We know that Common difference is Difference of second term and first term.
⇒ Common Difference (d) = -13 + 19 = 6
We know that Sum of n terms is given by : 
Given n = 63 and we found a = -19 and d = 6






The Sum of First 63 terms is 10521
AB is divided into 8 equal parts and point C is 1 part FROM A TO B, so the ratio is 1:7, with C being 1/7 of the way. The ratio is k, found by writing the numerator of the ratio (1) over the sum of the numerator and denominator (1+7). So our k value is 1/8. Now we need to find the rise and the run (slope) of the points A and B.

. That gives us a rise of -4 and a run of 12. The coordinates of C are found in this formula:
![C(x,y)=[ x_{1} +k(run), y_{1} +k(rise)]](https://tex.z-dn.net/?f=C%28x%2Cy%29%3D%5B%20x_%7B1%7D%20%2Bk%28run%29%2C%20y_%7B1%7D%20%2Bk%28rise%29%5D)
. Filling in accordingly, we have
![C(x,y)=[-3+ \frac{1}{8}(12),9+ \frac{1}{8}(-4)]](https://tex.z-dn.net/?f=C%28x%2Cy%29%3D%5B-3%2B%20%5Cfrac%7B1%7D%7B8%7D%2812%29%2C9%2B%20%5Cfrac%7B1%7D%7B8%7D%28-4%29%5D%20%20)
which simplifies a bit to

. Finding common denominators and doing the math gives us that the coordinates of point C are

. There you go!
Answer:
Sue's scores for the four games in ascending order are: 97, 98, 98, 107
Step-by-step explanation:
Her modal score was 98. The mode is found by using the number that appears most often. This means that 98 has to appear at least two times out of the four scores.
Her range was 10. The range is found by taking the highest score and subtracting it from the lowest score. The highest score had to be greater than 98 and the lowest score had to be less than 98 since we know the mode was 98.
Her mean score was 100. This mean is found by adding all the numbers together and then dividing by the total numbers listed. Adding the four scores together and dividing by 4 will equal 100.
Used guess and test:
Highest Number, 98, 98, Lowest Number
107 - 97 = 10 (meets range requirement)
97 + 98 + 98 + 107 = 400
400/4 = 100 (meets the mean requirement)
If there are real roots to be found for this polynomial, the Rational Root Theorem and synthetic division are the best way to find them. I teach from a book that uses c and d for the possible roots of the polynomial. C is our constant, 2, and d is the leading coefficient, 1. The factors of 2 are +/- 1 and +/-2. The factors for 1 are +/-1 only. Meaning, in all, there are 4 possibilities as roots for this polynomial. But there are only 3 total (because our polynomial is a third degree), so we have to find the first one, at least, from our possibilities above. Let's try x = -1, factor form (x + 1). If there is no remainder when we do the synthetic division, then -1 is a root. Put -1 outside the "box" and the coefficients from the polynomial inside: -1 (1 2 -1 -2). Bring down the first coefficient of 1 and multiply it by the -1 outside to get -1. Put that -1 up under the 2 and add to get 1. Multiply 1 times the -1 to get -1 and put that -1 up under the -1 and add to get -2. -1 times -2 is 2, and -2 + 2 = 0. So we have our first root of (x+1). The numbers we get when we do the addition along the way are the coefficients of our new polynomial, the depressed polynomial (NOT a sad one cuz it hates math, but a new polynomial that is one degree less than that of which we started!). The new polynomial is

. That can also be factored to find the remaining 2 roots. Use standard factoring to find that the other 2 solutions are (x+2) and (x-1). Our solutions then are x = -2, -1, 1, choice B from above.