Answer:
<em>Find the probability of success in a single trial and then think about the nature of the problem (when do we stop). </em>
Step-by-step explanation:
Observe that in the single trial, we have (8 4) possibilities of choosing our set of balls. If we have chosen two white balls and two black balls, the probability of doing that is simply
p=(4 2)*(4 2)/(8 4)
This is well know Hyper geometric distribution. Now, define random variable X that marks the number of trials that have been needed to obtain the right combination (two white and two black balls). From the nature of the problem, observe that X has Geometric distribution with parameter p that has been calculated above. Hence
P(X = n) = (1— p)^n-1 *( p )
<em>Find the probability of success in a single trial and then think about the nature of the problem (when do we stop). </em>
The correct answers are:
The slope of the line is 4.
A point on the line is (−5, 56)
Step-by-step explanation:
Given equation is:

The slope-intercept form is:

Comparing both equations we get
m = 4

The point is (-5,56)
So, the correct answers are:
The slope of the line is 4.
A point on the line is (−5, 56)
Keywords: Point-slope form, Slope
Learn more about point-slope form at:
#LearnwithBrainly
We use the trinomial theorem to answer this question. Suppose we have a trinomial (a + b + c)ⁿ, we can determine any term to be:
[n!/(n-m)!(m-k)!k!] a^(n-m) b^(m-k) c^k
In this problem, the variables are: x=a, y=b and z=c. We already know the exponents of the variables. So, we equate this with the form of the trinomial theorem.
n - m = 2
m - k = 5
k = 10
Since we know k, we can determine m. Once we know m, we can determine n. Then, we can finally solve for the coefficient.
m - 10 = 5
m = 15
n - 15 = 2
n = 17
Therefore, the coefficient is equal to:
Coefficient = n!/(n-m)!(m-k)!k! = 17!/(17-5)!(15-10)!10! = 408,408