Answer:

Step-by-step explanation:
<u>Find the measures of interior angles in each triangle</u>
Triangle BGC

The measures of triangle BGC are 
Triangle CGH
we know that
-----> by consecutive interior angles
we have that
so

substitute

we have



remember that




The measures of triangle CGH are 
Triangle GHE


remember that

substitute and solve for m<GEH



The measures of triangle GHE are 
Answer:
∅1=15°,∅2=75°,∅3=105°,∅4=165°,∅5=195°,∅6=255°,∅7=285°,
∅8=345°
Step-by-step explanation:
Data
r = 8 sin(2θ), r = 4 and r=4
iqualiting; 8.sin(2∅)=4; sin(2∅)=1/2, 2∅=asin(1/2), 2∅=30°, ∅=15°
according the graph 2, the cut points are:
I quadrant:
0+15° = 15°
90°-15°=75°
II quadrant:
90°+15°=105°
180°-15°=165°
III quadrant:
180°+15°=195°
270°-15°=255°
IV quadrant:
270°+15°=285°
360°-15°=345°
No intersection whit the pole (0)
Assuming that the topping order is not important, you need to use the combination to solve this question. The number of toppings is 12 and then added 2, so the number will become: 12+2= 14 toppings
From 14 toppings, ian need to choose 3. The possible ways would be:
14C3= 14!/(14-3)!3!= 14*13*12/ 3*2= 364 possible ways
Answer:
Quadrant 2 I think.
Step-by-step explanation:
You stet on the x axis wich is positive and you second number on the y axis is negitive