Answer:
Interest earned = 2713.8
Explanation:
We will solve this problem on two steps:
1- get the final amount after three years
2- get the interest earned by subtracting the initial amount from the final one.
1- getting the final amount after 3 years:
The formula that we will use is as follows:
A = P (1 + r/n)^(nt)
where:
A is the final amount we want to calculate
P is the initial amount = 6300
r is the interest = 0.12
n is the number of compounds per year =12
t is time in years = 3
Substitute to get the final amount:
A = P (1 + r/n)^(nt)
A = 6300 (1 + 0.12/12) ^ (12*3)
A = 9013.8
2- getting the interest earned:
Interest earned = final amount - initial amount
Interest earned = 9013.8 - 6300
Interest earned = 2713.8
Hope this helps :)
we are given
In a particularly sunny month, Solaire's solar panels generated 110 percent as much power as expected.
so, we need to change percent into fraction to get our value
we can write
110%=
now, we can simplify it
and we get
110%=
so,
Solaire's solar panels generate
of the expected amount of power.............Answer
Answer:
Step-by-step explanation:
Hello!
X: number of absences per tutorial per student over the past 5 years(percentage)
X≈N(μ;σ²)
You have to construct a 90% to estimate the population mean of the percentage of absences per tutorial of the students over the past 5 years.
The formula for the CI is:
X[bar] ±
* 
⇒ The population standard deviation is unknown and since the distribution is approximate, I'll use the estimation of the standard deviation in place of the population parameter.
Number of Absences 13.9 16.4 12.3 13.2 8.4 4.4 10.3 8.8 4.8 10.9 15.9 9.7 4.5 11.5 5.7 10.8 9.7 8.2 10.3 12.2 10.6 16.2 15.2 1.7 11.7 11.9 10.0 12.4
X[bar]= 10.41
S= 3.71

[10.41±1.645*
]
[9.26; 11.56]
Using a confidence level of 90% you'd expect that the interval [9.26; 11.56]% contains the value of the population mean of the percentage of absences per tutorial of the students over the past 5 years.
I hope this helps!