<h2><u><em>
Answer:
</em></u></h2><h2><u><em>
</em></u></h2>
ASA and AAS
<h2><u><em>
Step-by-step explanation:
</em></u></h2>
We do not know if these are right triangles; therefore we cannot use HL to prove congruence.
We do not have 2 or 3 sides marked congruent; therefore we cannot use SSS or SAS to prove congruence.
We are given that EF is parallel to HJ. This makes EJ a transversal. This also means that ∠HJG and ∠GEF are alternate interior angles and are therefore congruent. We also know that ∠EGF and ∠HGJ are vertical angles and are congruent. This gives us two angles and a non-included side, which is the AAS congruence theorem.
Since EF and HJ are parallel and EJ is a transversal, ∠JHG and ∠EFG are alternate interior angles and are congruent. Again we have that ∠EGF and ∠HGJ are vertical angles and are congruent; this gives us two angles and an included side, which is the ASA congruence theorem.
Answer:
The range stays the same.
The domain stays the same.
Step-by-step explanation:
The function
is an exponential function, where <em>a</em> is the coefficient, <em>b</em> is the base and <em>x</em> is the exponent.
The domain for this kind of functions is: All real numbers.
And the range is: (0,∞); this happen because the exponential functions are always positive when <em>a</em>>0.
Therefore, if the value of <em>a</em> is increased by 2, the domains will stay the same and the range will stay the same: (0,∞). The coefficient does not change the domain or the range if it keeps the same sign.
Answer:
Step-by-step explanation:
12.80+3.42= 16.22
16.22-9.70= 6.52 that's your answer
<span>65 = number of different arrangements of 2 and 3 card pages such that the total number of card slots equals 18. 416,154,290,872,320,000 = number of different ways of arranging 18 cards on the above 65 different arrangements of page sizes. ===== This is a rather badly worded question in that some assumptions aren't mentioned. The assumptions being: 1. The card's are not interchangeable. So number of possible permutations of the 18 cards is 18!. 2. That all of the pages must be filled. Since the least common multiple of 2 and 3 is 6, that means that 2 pages of 3 cards can only be interchanged with 3 pages of 2 cards. So with that said, we have the following configurations. 6x3 card pages. Only 1 possible configuration. 4x3 cards and 3x2 cards. These pages can be arranged in 7!/4!3! = 35 different ways. 2x3 cards and 6x2 cards. These pages can be arranged in 8!/2!6! = 28 ways 9x2 card pages. These can only be arranged in 1 way. So the total number of possible pages and the orders in which that they can be arranged is 1+35+28+1 = 65 possible combinations. Now for each of those 65 possible ways of placing 2 and 3 card pages such that the total number of card spaces is 18 has to be multiplied by the number of possible ways to arrange 18 cards which is 18! = 6402373705728000. So the total amount of arranging those cards is 6402373705728000 * 65 = 416,154,290,872,320,000</span>