Answer:
volcanic eruptions
Explanation:
The volcanic eruptions are the ones that manage to cause changes to the lithosphere by building up new material on the surface. Through the volcanic eruptions we have release of pyroclastic material on the surface, and more importantly and in much higher amount lava flows. The lava flows quickly cool off on the surface on the Earth, and as they do they pile up new layers of igneous rocks, thus new crust on the surface of the Earth, causing changes on the lithosphere and shaping it for the foreseeable future.
From tables, the speed of sound at 0°C is approximately
V₁ = 331 m/s (in air)
V₃ = 5130 m/s (in iron)
Distance traveled is
d = 100 km = 10⁵ m
Time required to travel in air is
t₁ = d/V₁ = 10⁵/331 = 302.12 s
Time required to travel in iron is
t₂ = d/V₂ = 10⁵/5130 = 19.49 s
The difference in time is
302.12 - 19.49 = 282.63 s
Answer: 283 s (nearest second)
<span>As it is descended from a vertical height h,
The lost Potential Energy = Mgh
The gained Kenetic Energy = (1/2)Mv^2; The rotational KE = (1/2)Jw^2
The angular speed w = speed/ Radius = v/R
So Rotational KE = (1/2)Jw^2 = (1/2)J(v/R)^2; J is moment of inertia
Now Mgh = (1/2)Mv^2 + (1/2)J(v/R)^2 => 2gh/v^2 = 1 + (J/MR^2)
As v = (5gh/4)^1/2, (J/MR^2) = 2gh/v^2 - 1 => (J/MR^2) = (8gh/5gh) - 1
so (J/MR^2) = 3/5 and therefore J = (3/5)MR^2.</span>
I know you're probably done with this by now, but the answer is *Lake-Effect Snow*
Answer:
1.0125 x 10^19
Explanation:
current flowing through conductive wire= 9mA = 9 x 10^ -3 A
charge passing per 3 min
Q = It
= 9 x 10^ -3 x (3 x 60)
= 1.620 C
no of electrons in charge
Q = ne
1.620 = n x 1.6 x 10 ^ -19
n. = 1.0125 x 10 ^19