Hope this helps but I think the answer is 5k+3.25p=18
Part A:
The probability that the birthday of three strangers were on Wednesday is given by

Part B:
The probability that the birthday of three strangers were on different days of the week is given by

Part C:
The probability that none of the three strangers were born on Saturday is given by
Answer:
A, C, D
Step-by-step explanation:
One way to answer this question is to use synthetic division to find the remainder from division of the polynomial by (x-3). If the polynomial is written in Horner form, evaluating the polynomial for x=3 is substantially similar.
A(x) = ((x -2)x -4)x +3
A(3) = ((3 -2)3 -4)3 +3 = -3 +3 = 0 . . . . . has a factor of (x -3)
__
B(x) = ((x +3)x -2)x -6
B(3) = ((3 +3)3 -2)3 -6 = (16)3 -6 = 42 . . . (x -3) is not a factor
__
C(x) = (x -2)x^3 -27
C(3) = (3 -2)3^3 -27 = 0 . . . . . . . . . . . . . has a factor of (x -3)
__
D(x) = (x^3 -20)x -21
D(3) = (3^3 -20)3 -21 = (7)3 -21 = 0 . . . . has a factor of (x -3)
___
The polynomials of choice are A(x), C(x), and D(x).
Answer:
The image of
through T is ![\left[\begin{array}{c}24&-8\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D24%26-8%5Cend%7Barray%7D%5Cright%5D)
Step-by-step explanation:
We know that
→
is a linear transformation that maps
into
⇒

And also maps
into
⇒

We need to find the image of the vector ![\left[\begin{array}{c}4&-4\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D4%26-4%5Cend%7Barray%7D%5Cright%5D)
We know that exists a matrix A from
(because of how T was defined) such that :
for all x ∈ 
We can find the matrix A by applying T to a base of the domain (
).
Notice that we have that data :
{
}
Being
the cannonic base of 
The following step is to put the images from the vectors of the base into the columns of the new matrix A :
(Data of the problem)
(Data of the problem)
Writing the matrix A :
![A=\left[\begin{array}{cc}4&-2\\5&7\\\end{array}\right]](https://tex.z-dn.net/?f=A%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D4%26-2%5C%5C5%267%5C%5C%5Cend%7Barray%7D%5Cright%5D)
Now with the matrix A we can find the image of
such as :
⇒
![T(\left[\begin{array}{c}4&-4\end{array}\right])=\left[\begin{array}{cc}4&-2\\5&7\\\end{array}\right]\left[\begin{array}{c}4&-4\end{array}\right]=\left[\begin{array}{c}24&-8\end{array}\right]](https://tex.z-dn.net/?f=T%28%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D4%26-4%5Cend%7Barray%7D%5Cright%5D%29%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D4%26-2%5C%5C5%267%5C%5C%5Cend%7Barray%7D%5Cright%5D%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D4%26-4%5Cend%7Barray%7D%5Cright%5D%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D24%26-8%5Cend%7Barray%7D%5Cright%5D)
We found out that the image of
through T is the vector ![\left[\begin{array}{c}24&-8\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D24%26-8%5Cend%7Barray%7D%5Cright%5D)
Her school is 2/3 miles away
2/3=4/6miles
So we need to find out how long it will take for her to run home from school...
School=4/6 miles
In 1 minutes she can run 1/6 miles
1min=1/6miles
In 2 minutes she can run 1/6+1/6 miles (1/6+1/6=2/6)
2min=2/6miles
3min=3/6miles
4min=4/6miles
It will take Erica 4 minutes to run 4/6 miles, so it'll take her 4 minutes to get home.