Answer:
10 Ships
Step-by-step explanation:
Source: Khan Academy
-3x + y - 2z = 10 |* -1
3x - y +2z = -10
5x -2y -2z = 12
--------------------------- I add these equations term by term
8x - 3y = 2
-3x + y - 2z =10 ⇒ -3x + y - 2z =10
x -y +z = 23 | *2 2x - 2y + 2z = 46
----------------------------- I add these eq.
-x -y = 56
8x - 3y = 2
-x -y = 56
this is the system after i reduce it ( it has only two variables x and y)
Get rid of cos2x by dividing both the values. So Sin2x/cos2x +3cos2x/cos2x.
Tan2x = 3
2x = -71.5 so x is -35.6
Use the quadrant method and add 360 twho the two values tou get.
Answer:
g(x) = RootIndex 3 StartRoot x + 2 EndRoot
Answer:
a) 1+2+3+4+...+396+397+398+399=79800
b) 1+2+3+4+...+546+547+548+549=150975
c) 2+4+6+8+...+72+74+76+78=1560
Step-by-step explanation:
We know that a summation formula for the first n natural numbers:
1+2+3+...+(n-2)+(n-1)+n=\frac{n(n+1)}{2}
We use the formula, we get
a) 1+2+3+4+...+396+397+398+399=\frac{399·(399+1)}{2}=\frac{399· 400}{2}=399· 200=79800
b) 1+2+3+4+...+546+547+548+549=\frac{549·(549+1)}{2}=\frac{549· 550}{2}=549· 275=150975
c)2+4+6+8+...+72+74+76+78=S / ( :2)
1+2+3+4+...+36+37+38+39=S/2
\frac{39·(39+1)}{2}=S/2
\frac{39·40}{2}=S/2
39·40=S
1560=S
Therefore, we get
2+4+6+8+...+72+74+76+78=1560