Answer:
Explanation:
The pail is rotated at a constant rate in vertical circular path so it has the minimum speed at all points along its circular path . That means at top position the velocity is almost zero. In that case the centripetal force at top position will be provided by its weight or
mg = mv² / r ( r is radius of vertical circular path )
v = √ rg
At the bottom position its velocity will be increased due to loss of potential energy
so 1/2 m V² = 1/2 m v² + mg x 2r
V =√ 5 gr
If R be the reaction force at the bottom by bottom of pail
R - mg = mV² / r
R = mg +mV² / r
= mg + m x 5gr / r
R = 6mg
This is the magnitude of the force exerted by the water on the bottom of the pail .
Answer:
a) 4.485 kg b) 3.94 kg
Explanation:
since the maximum tension the line can stand is 44 N and for question a the speed is constant (acceleration must be zero since the velocity or speed is not changing), F(tension) = mass * acceleration due to gravity (g) .
44 = m * 9.81m/s^2
m = 44/9.81 = 4.485kg
b) F(tension) = ma + mg ( where a is the acceleration of the body and g is the acceleration of the gravity)
44 = m (a +g)
44 = m (1.37 + 9.81)
44/11.18 = m
m = 3.94 kg
<span>The minimum energy required for isomerization is 267 000 J/mol
</span>
The isomerization of cis-but-2-ene to trans-but-2-ene requires breaking of the π bond.
The bond energy of a C-C σ bond is 347 kJ/mol.
The bond energy of a C=C double bond (σ + π) is 614 kJ/mol.
So the bond energy of a π bond is (614 – 347) kJ/mol = 267 kJ/mol =
267 000 J/mol.
Answer:
-6.6 km/h
Explanation:
In 7hr plane travelled 2020km;
For the first 4hr the average speed was 310km/h;
d=st, s=d/t;
Distance covered in first 4h is d = 310km/h×4h = 1240km;
See the image attached for further solution
Answer:
0.69 ohm
Explanation:
Heat generated per second, H = 50 cal/s
Potential difference, V = 12 V
Let R is the resistance of coil.
The formula for the heat is given by


R = 0.69 ohm