Answer:
The correct option is;
H. 32·π
Step-by-step explanation:
The given information are;
The time duration for one complete revolution = 75 seconds
The distance from the center of the carousel where Levi sits = 4 feet
The time length of a carousel ride = 5 minutes
Therefore, the number of complete revolutions, n, in a carousel ride of 5 minutes is given by n = (The time length of a carousel ride)/(The time duration for one complete revolution)
n = (5 minutes)/(75 seconds) = (5×60 seconds/minute)/(75 seconds)
n = (300 s)/(75 s) = 4
The number of complete revolutions - 4
The distance of 4 complete turns from where Levi seats = 4 ×circumference of circle of Levi's motion
∴ The distance of 4 complete turns from where Levi seats = 4 × 2 × π × 4 = 32·π.
2.8 millimeter to meters is .0028 but to tell you, you didn't word the question correctly at there no such thing as expanded form
Answer:
StartFraction negative 1 Over k cubed EndFraction
Step-by-step explanation:
3k / (k + 1) × (k²- 1) / 3k³
= 3k(k² - 1) / (k + 1)(3k³)
= 3k³ - 3k / 3k⁴ + 3k³
= -3k / 3k⁴
= -1/k³
StartFraction k + 1 Over k squared EndFraction
(k + 1) / k²
StartFraction k minus 1 Over k squared EndFraction
(k - 1)/k²
StartFraction negative 1 Over k cubed EndFraction
= -1/k³
StartFraction 1 Over k EndFraction
= 1/k
Answer:
70 times
you didn't attach a picture so i can't help with the other part
Step-by-step explanation:
Answer:
Option A
Step-by-step explanation:
This is increasing function
The first option is correct
<em>See attached graph for reference</em>