Answer:
Option A
Explanation:
Sperm undergo more mitotic cellular divisions than egg and therefore have a higher risk of developing a spontaneous mutation.
As noted from the explanation given above...in the process of development in males, the sperm cells always undergo many mitotic cellular division throughout their life increasimg the males' chances of undergoing spontaneous mutations as compared to the females during development where it gets to a certain point in their lives where they stop producing egg cells after the once division.
Thus, the continuous divisions undergone by the sperm cells acquire more spontaneous mutations on the cell that produces this lycantrophy trait.
That is the cell membrane. Think of it as a gate around a city, that is how I remember it. The city is the cell, and the cell membrane is the gate that "protects" the city, and controls what can enter and exit.
Answer:
The DNA strands are not free in the nucleus, but forming a compact structure called chromatin along special proteins, known as histones. The chromatin structure has an important role in gene expression, as the level of compaction and the histone modification act as signals for the transcription machinery
In order to be transcribed, different areas in the genome need to unfold from the histone proteins, so the RNA polymerase can access the DNA.
That means, <u>that DNA sequences that transcribe at high rate, are more often unfold from the histones, and more exposed to other proteins to bind them. Particularly, those areas are more sensitive to the attack of endonucleases, such as DNAse I.</u>
As a consequence, an assay of DNAse I digestion can be used to identify highly sensitive or resistant to DNAse cleavage areas in the genome, and therefore serve as an insight to which sequences are more and less transcriptionally active.
Answer:
High-energy phosphorylated intermediates that serve as phosphate donors to ADP are generated as a result of electron-transfer reactions.
Explanation:
Peter Mitchell proposed Chemiosmotic hypothesis which state that the driving of the synthesis of ATP is accomplished by a proton-motive force. He propose that whenever electron is moved along the electron transfer chain then proton will be moved accross the inner part of mitochondria membrane. As a result of this there would be increase in PH of the mitochondria matrix and reduced PH of the intermembrane space.
Some Evidence about Chemiosmotic hypothesis hypothesis;
1)transportation of electron brings about the generatation of a proton gradient. there is difference in the PH on the outside and inside the mitochondria.
2)To synthesis ATP, a proton gradient is required only and other means by which PH gradient is generated
Therefore,High-energy phosphorylated intermediates that serve as phosphate donors to ADP are generated as a result of electron-transfer reactions is not Micheal Mitchell statement.
FIBRE B
is the answer
becausee
it is