Answer:
Step-by-step explanation:
We have to remind one of the properties of the limits:
Lim x→a f(x)*g(x) = [Lim x→a f(x)]*[Lim x→a g(x)]
Hence, we evaluate the products of the limits
(a) Lim x→a f(x)*g(x) = 0*0 = 0
(b) Lim x→a f(x)*p(x) = 0*[infinity] = INDETERMINATE
(c) Lim x→a h(x)*p(x) = 1*[infinity] = infinity
(d) Lim x→a p(x)*q(x) = [infinity]*[infinity] = INDETERMINATE
Answer:
<em>Find the probability of success in a single trial and then think about the nature of the problem (when do we stop). </em>
Step-by-step explanation:
Observe that in the single trial, we have (8 4) possibilities of choosing our set of balls. If we have chosen two white balls and two black balls, the probability of doing that is simply
p=(4 2)*(4 2)/(8 4)
This is well know Hyper geometric distribution. Now, define random variable X that marks the number of trials that have been needed to obtain the right combination (two white and two black balls). From the nature of the problem, observe that X has Geometric distribution with parameter p that has been calculated above. Hence
P(X = n) = (1— p)^n-1 *( p )
<em>Find the probability of success in a single trial and then think about the nature of the problem (when do we stop). </em>
The answer is -1.1
Hope you get it right
The shelf should sell for $235.20.
Marking the price up by 60% means taking 160% of the cost:
160% = 160/100 = 1.6; 1.6(147) = 235.20
Answer:
Step-by-step explanation:
1) True. This is because the divergence of F is 1, thus, F is a linear function. Orientation is given outward to the surface. Linear function double integrated over a surface with outward orientation gives volume enclosed by the surface.
2) True. This is primarily what the Divergence theorem is.
3) False. If F was 3/pi instead of div(F), then the statement would have been true.
4) False. The gradient of divergence can be anything. The curl of divergence of a vector function is 0, not the gradient o divergence.
5) False. While finding Divergence, derivatives are taken for different variables. Since the derivatives of constants are 0, therefore, both the vector functions F and G can be different constant parts of there components even if their divergences are equal.