The answer is B because n is equal to the number of notebooks. you can not exceed the amount of money that you have to buy the notebooks
Answer:
(a) = 40%
(b) = 28%
(c) Expected value = $222,500
Standard deviation = $7,216.88
Step-by-step explanation:
This is a normal distribution with a = 210,000 and b =235,000
(a) The probability that he will get at least $225,000 for the house is:

(b)The probability he will get less than $217,000 is:

(c) The expected value (E) and the standard deviation (S) are:

For this case we have the following equation:

From here, we must substitute ordered pairs of the form:
(x, y)
If the ordered pair satisfies the equation, then it belongs to the line.
We have then:
For (8, 5):
We substitute the following values:

We observe that the equation is not satisfied and therefore, this point does not belong to the line.
Since one of the points does not belong to the line, then the equation is not a good model.
Answer:
It is not a good model. One of the points does not belong to the line.
Answer:
The points are randomly scattered with no clear pattern
The number of points is equal to those in the scatterplot.
Step-by-step explanation:
The points in the residual plot of the line of best fit that is a good model for a scatterplot are randomly scattered with no clear pattern (like a line or a curve).
The number of points in the residual plot is always equal to those in the scatterplot.
It doesn't matter if there are about the same number of points above the x-axis as below it, in the residual plot.
The y-coordinates of the points are not the same as the points in the scatterplot.
Answer:
C I beleive the answer is C Both data sets show multiplicative relationships.
In Data Set I, y is 5.5 times x, and in Data Set II, y is 5 times x.
Step-by-step explanation:
I beleive the answer it C thank you bye bye have a nice day hope this helped