Answer:
offline backup solution
Explanation:
In such a scenario, the best option would be an offline backup solution. This is basically a local and offline server that holds all of the flight record data that the cloud platform has. This offline backup server would be updated frequently so that the data is always up to date. These servers would be owned by the aviation company and would be a secondary solution for the company in case that the cloud platform fails or the company cannot connect to the cloud service for whatever reason. Being offline allows the company to access the database regardless of internet connectivity.
Answer:
The most basic and useful technique in NLP is extracting the entities in the text. It highlights the fundamental concepts and references in the text. Named entity recognition (NER) identifies entities such as people, locations, organizations, dates, etc. from the text.
It encourages users to revisit your website.
Answer:
Let's convert the decimals into signed 8-bit binary numbers.
As we need to find the 8-bit magnitude, so write the powers at each bit.
<u>Sign -bit</u> <u>64</u> <u>32</u> <u>16</u> <u>8</u> <u>4</u> <u>2</u> <u>1</u>
+25 - 0 0 0 1 1 0 0 1
+120- 0 1 1 1 1 0 0 0
+82 - 0 1 0 1 0 0 1 0
-42 - 1 0 1 0 1 0 1 0
-111 - 1 1 1 0 1 1 1 1
One’s Complements:
+25 (00011001) – 11100110
+120(01111000) - 10000111
+82(01010010) - 10101101
-42(10101010) - 01010101
-111(11101111)- 00010000
Two’s Complements:
+25 (00011001) – 11100110+1 = 11100111
+120(01111000) – 10000111+1 = 10001000
+82(01010010) – 10101101+1= 10101110
-42(10101010) – 01010101+1= 01010110
-111(11101111)- 00010000+1= 00010001
Explanation:
To find the 8-bit signed magnitude follow this process:
For +120
- put 0 at Sign-bit as there is plus sign before 120.
- Put 1 at the largest power of 2 near to 120 and less than 120, so put 1 at 64.
- Subtract 64 from 120, i.e. 120-64 = 56.
- Then put 1 at 32, as it is the nearest power of 2 of 56. Then 56-32=24.
- Then put 1 at 16 and 24-16 = 8.
- Now put 1 at 8. 8-8 = 0, so put 0 at all rest places.
To find one’s complement of a number 00011001, find 11111111 – 00011001 or put 0 in place each 1 and 1 in place of each 0., i.e., 11100110.
Now to find Two’s complement of a number, just do binary addition of the number with 1.