Answer:
Part 1: There are 4.7*10^21 ways to select 40 volunteers in subgroups of 10
Part 2: The research board can be chosen in 32760 ways
Step-by-step explanation:
Part 1:
The number of ways in which we can organized n elements into k groups with size n1, n2,...nk is calculate as:

So, in this case we can form 4 subgroups with 10 participants each one, replacing the values of:
- n by 40 participants
- k by 4 groups
- n1, n2, n3 and n4 by 10 participants of every subgroups
We get:

Part 2:
The number of ways in which we can choose k element for a group of n elements and the order in which they are chose matters is calculate with permutation as:

So in this case there are 4 offices in the research board, those are director, assistant director, quality control analyst and correspondent. Additionally this 4 offices are going to choose from a group of 5 doctors.
Therefore, replacing values of:
- n by 15 doctors
- k by 4 offices
We get:

Volume = 1/3 * area of the base * height
75 = 1/3 * 5^2 * h
h = 75 * 3 / 25 = 3*3 = 9 feet answer
Isolating 2abCos(c) on one side of the equation and using the given values of a, b and c we can find the answer to this question as shown below:
Answer:
Step-by-step explanation:
Given data
Total units = 250
Current occupants = 223
Rent per unit = 892 slips of Gold-Pressed latinum
Current rent = 892 x 223 =198,916 slips of Gold-Pressed latinum
After increase in the rent, then the rent function becomes
Let us conside 'y' is increased in amount of rent
Then occupants left will be [223 - y]
Rent = [892 + 2y][223 - y] = R[y]
To maximize rent =

Since 'y' comes in negative, the owner must decrease his rent to maximixe profit.
Since there are only 250 units available;
![y=-250+223=-27\\\\maximum \,profit =[892+2(-27)][223+27]\\=838 * 250\\=838\,for\,250\,units](https://tex.z-dn.net/?f=y%3D-250%2B223%3D-27%5C%5C%5C%5Cmaximum%20%5C%2Cprofit%20%3D%5B892%2B2%28-27%29%5D%5B223%2B27%5D%5C%5C%3D838%20%2A%20250%5C%5C%3D838%5C%2Cfor%5C%2C250%5C%2Cunits)
Optimal rent - 838 slips of Gold-Pressed latinum