We can solve this equation by using the Square Root Method.
First, take the square root of each side of the equation:
(x-8)^2 = 144 becomes x-8 = 12
Then add 8 to both sides.
x=20
The original lawn was d. 20 feet by 20 feet.
Answer:
about 11.03 million
Step-by-step explanation:
Use the equation I = P(1+r/100)^n - P (I is the compound interest, P is the principle, r is the rate percent, and n is the number of years):
Substitute the values given:
I = 70,000,000(1 + 5/100)^3 - 70,000,000
Use a calculator to solve and you will get ~11.03 million.
The volume of a sphere is given by:

So, we need to deduct this equation. We will walk through Calculus on the concept of a solid of revolution that is a solid figure that is obtained by rotating a plane curve around some straight line (the axis of revolution<span>) that lies on the same plane. We know from calculus that:
</span>
![V=\pi \int_{a}^{b}[f(x)]^{2}dx](https://tex.z-dn.net/?f=V%3D%5Cpi%20%5Cint_%7Ba%7D%5E%7Bb%7D%5Bf%28x%29%5D%5E%7B2%7Ddx)
<span>
Then, according to the concept of solid of revolution we are going to rotate a circumference shown in the figure, then:
</span>

<span>
Isolationg y:
</span>

<span>
So,
</span>

<span>
</span>
![V=\pi \int_{a}^{b}[\sqrt{r^{2}-x^{2}}]^{2}dx](https://tex.z-dn.net/?f=V%3D%5Cpi%20%5Cint_%7Ba%7D%5E%7Bb%7D%5B%5Csqrt%7Br%5E%7B2%7D-x%5E%7B2%7D%7D%5D%5E%7B2%7Ddx)
<span>
</span>

<span>
being -r and r the limits of this integral.
</span>

<span>
Solving:
</span>
![V=\pi[r^{2}x-\frac{x^{3}}{3}]\right|_{-r}^{r}](https://tex.z-dn.net/?f=V%3D%5Cpi%5Br%5E%7B2%7Dx-%5Cfrac%7Bx%5E%7B3%7D%7D%7B3%7D%5D%5Cright%7C_%7B-r%7D%5E%7Br%7D)
Finally:
<span>
</span>

<span>
</span><span>
</span>
Answer:
Sofia measures the length of her car as 16 feet.
What is the greatest possible error?
<h2> ⇒ 0.5 feet
</h2>
What is the margin of error?
<h2> ⇒ 15.5 TO ⇒ 16.5 feet</h2>
Step-by-step explanation: