Answer:
Step-by-step explanation:
A dime is worth 10 cents. Converting to dollars, it becomes 10/100 = $0.1
A quarter is worth 25 cents. Converting to dollars, it becomes 25/100 = $0.25
Let x represent the number of dimes that Jayden has.
Let y represent the number of quarters that Jayden has.
Jayden has some dimes and some quarters. He has at most 25 coins. It means that
x + y ≤ 25
The coins worth at least $4.60 combined. It means that
0.1x + 0.25y ≥ 4.6 - - - - - - - - - - 1
If Jayden has 7 dimes, then
7 + y ≤ 25
y ≤ 25 - 7
y ≤ 18
Substituting x = 7 into equation 1, it becomes
0.1 × 7 + 0.25y ≥ 4.6
0.7 + 0.25y ≥ 4.6
0.25y ≥ 4.6 - 0.7
0.25y ≥ 3.9
y ≥ 3.9/0.25
y ≥ 15.6
All possible values for the number of quarters that he could have would be
15.6 ≤ y ≤ 18
Symmetric property is the correct term
Answer: 1232
Step-by-step explanation: ( 8x10 -3) x(2x10 -4)
( 8x10 -3) = 77
(2x10 -4) = 16
77 x 16 = 1232
Answer = 1232
Answer:
B = (7, 2)
Step-by-step explanation:
B = 2M -A
B = 2(3, 4) -(-1, 6) = (2·3-(-1), 2·4-6)
B = (7, 2)
_____
The expression for the other end point, B, comes from the equation for the midpoint.
M = (A +B)/2
2M = A + B . . . . . multiply by 2
2M -A = B . . . . . . subtract A to get an expression for B
The expected value of the amount of average snowfall for over 30 years is 86.7 inches with a standard deviation of 40.4 inches. To verify if this particular trend continues, we must check the significance value of the amount snowfall for the past four years.
Given that the snowfall for past years are as follows: 115.7 inches, 62.9 inches, 168.5 inches, and 135.7 inches.
Thus the mean of the sample would be: (115.7 + 62.9 + 168.5 + 135.7)/4 = 120.7 inches.
To compute for the z-score, we have
z-score = (x – μ) / (σ / √n)
where x is the computed/measured value, μ is the expected mean, σ is the standard deviation, and n is the number of samples.
Using the information we have,
z-score (z) = (120.7 - 86.7) / (40.4/ √4) = 1.68
In order to reject the null hyptohesis our probability value must be less than the significance level of 5%. For our case, since z = 1.68, P-value = 0.093 > 0.05.
Therefore, the answer is B.