Answer:
True
Explanation:
Oogenesis includes the formation of one egg cell from a single oocyte or egg mother cell. The diploid primary oocytes in the ovaries enter into the first meiotic division and form a haploid secondary oocyte and a haploid first polar body. After fertilization, the secondary oocytes complete the meiosis-II and forms one large ovum and a second polar body. The ovum formed by meiosis-II is much larger than the second polar body due to the unequal distribution of cytoplasm during meiosis-II. This imparts enough amount of cytoplasm in the zygote to support the mitosis without any cell growth.
<span>During process 1→3→6, the temperature of the gas decreases slowly during process , the temperature of the gas rapidly decreases and then increases increases and then decreases remains constant. Hence, in the first step, the temperature of gas decreases slowly, then decreases rapidly, then it increases and finally the decreases becomes constant.</span>
Answer:
The homozygous dominant phenotype is higher than expected, indicating that evolution has occurred.
Explanation:
At the start there are 200 fishes in the pond, 100 of them are AA(50%) and 100 of them are aa(50%). Using the Hardy-Weinberg Equilibrium equation we can say that the gene frequency is
A=0.5
a=0.5
With those frequency, the expected percentage of offspring with dominant genotype will be:
AA= 0.5 * 0.5 = 0.25 = 25%
The number of homozygous dominant found is 35% which is higher than expected (25%). Higher homozygous dominant frequency than expected means the Hardy-Weinberg Equilibrium is changed. In this case, evolution probably the cause that shifts the gene frequency.