so in this case, we have a rectangular prism, a box, at the bottom, and a cone on top.
the prism is just a 17x9x5, and its volume is just that product.
the cone uses the short side of 9 for its diameter, so the diameter of the cone is 9, meaning its radius is half that or 4.5, whilst its height is 10.

Where are the graphs? And the solutions are the 2 points that intersect with the x-axis I don’t know if that’s the correct equation but i only got 1 solution once i put the equation into Desmos
Answer:
x can take any value and are viable in this situation if and only if it is a positive number
Step-by-step explanation:
We know that the area of a rectangle is given by:
A = x * y
So if we replace we have:
12 ≤ x * y ≤ 36
We divide by y, and we have:
12 / y ≤ x ≤ 36 / y
Which means that the value of x depends on y, that is to say if y is worth 1, the inequality would be:
12 ≤ x ≤ 36
In the event that y is equal to 2:
12/2 ≤ x ≤ 36/2
6 ≤ x ≤ 18
Which means, that depending on y, x can take any value and are viable in this situation if and only if it is a positive number.
Answer:
Step-by-step explanation:
The factorization of x² - 5x + 6 can be determined thinking critically about two numbers, that if we multiply those two numbers together it will result into a value of +6 and if we add those numbers together , we will have -5
The numbers are -3 and -2 ; if we multiply -3 and -2 , we have = 6
If we add -3 + (-2) ; we have,
-3-2 = -5
Now the factorization of
x² - 5x + 6 = 0 is as follows.
x² - 3x - 2x + 6
By factorization,
x(x - 3) - 2 (x - 3) = 0
(x - 2) or (x-3) = 0
Now, using An algebra tile configuration. The diagrammatic expression showing how an algebraic tile configuration should looks like can be found in the attached image below.
Hint:
Let represent ,
1 = x² tile
-5 = - x tiles
6 = 1 tiles