Answer:
![\frac{\sqrt[3]{16y^4}}{x^2}](https://tex.z-dn.net/?f=%5Cfrac%7B%5Csqrt%5B3%5D%7B16y%5E4%7D%7D%7Bx%5E2%7D)
Step-by-step explanation:
The options are missing; However, I'll simplify the given expression.
Given
![\frac{\sqrt[3]{32x^3y^6}}{\sqrt[3]{2x^9y^2} }](https://tex.z-dn.net/?f=%5Cfrac%7B%5Csqrt%5B3%5D%7B32x%5E3y%5E6%7D%7D%7B%5Csqrt%5B3%5D%7B2x%5E9y%5E2%7D%20%7D)
Required
Write Equivalent Expression
To solve this expression, we'll make use of laws of indices throughout.
From laws of indices ![\sqrt[n]{a} = a^{\frac{1}{n}}](https://tex.z-dn.net/?f=%5Csqrt%5Bn%5D%7Ba%7D%20%20%3D%20a%5E%7B%5Cfrac%7B1%7D%7Bn%7D%7D)
So,
gives

Also from laws of indices

So, the above expression can be further simplified to

Multiply the exponents gives

Substitute
for 32


From laws of indices

This law can be applied to the expression above;
becomes

Solve exponents


From laws of indices,
; So,
gives

The expression at the numerator can be combined to give

Lastly, From laws of indices,
; So,
becomes
![\frac{\sqrt[3]{(2y)}^{4}}{x^2}](https://tex.z-dn.net/?f=%5Cfrac%7B%5Csqrt%5B3%5D%7B%282y%29%7D%5E%7B4%7D%7D%7Bx%5E2%7D)
![\frac{\sqrt[3]{16y^4}}{x^2}](https://tex.z-dn.net/?f=%5Cfrac%7B%5Csqrt%5B3%5D%7B16y%5E4%7D%7D%7Bx%5E2%7D)
Hence,
is equivalent to ![\frac{\sqrt[3]{16y^4}}{x^2}](https://tex.z-dn.net/?f=%5Cfrac%7B%5Csqrt%5B3%5D%7B16y%5E4%7D%7D%7Bx%5E2%7D)
Answer:
y = 0
Step-by-step explanation:
Given
f(x) = 4x² +x⁵ +10x³ +5x+8x⁴
Required
Determine the y intercept
The y intercept of a function is a point where x = 0
So, we have to substitute 0 for x in the above function
f(x) = 4x² +x⁵ +10x³ +5x+8x⁴ becomes
f(0) = 4(0)² +(0)⁵ +10(0)³ +5(0)+8(0)⁴
f(0) = 4 * 0 + 0 + 10 * 0 + 5 * 0 + 8 * 0
f(0) = 0 + 0 + 0 + 0 + 0
f(0) = 0
Substitute y for f(0)
y = 0
Hence, the y intercept is 0
Answer:
1 cm : 250 m
Step-by-step explanation:
the scale is 4 cm : 1 km
4 cm/4 : 1 km/4
1 cm : 250 m
Answer:
Daniel can read his data and refer to line as best line of fit and estimate an average per set of hours.
Step-by-step explanation:
A line of fit draws a solid conclusion to the average for the hours spent during the amount of indicated hours. We draw a line of fit central fit and aim similar centrality as that similar results of the mean (without working out the mean we can draw a line perpendicular to the number of mean, but in line of fit we go central to all the descending or cascading results to include all results but just using one line), with one further consideration and that is balance if anything sticks out from the norm ie) weather conditions including data, we suggest if there is nothing to weigh the line of fit to a balancing outcome that shows the opposite of kilometres walked (eg. extreme higher mileage within the hour/s) then it may just alter the line a fraction of how many treks he did, but not in data less than 30 entries. Have attached an example where they classify in economics something outside the norm is called a misfit. Daniel can read his data and refer to line as best line of fit and estimate an average per set of hours. Here on the attachment you can read any misfit info and use the line coordination perpendicular to guide the indifference, the attachment shows it is not really included in the best line of fit as other dominating balances have occurred and therefore we have a misfit, all whilst using best line of fit to balance everything fairly.

A square rotated about its center by 360º maps onto itself at 90°, 180°, 270° and 360° - 4 different angles of rotation.
You can reflect a square onto itself across two diagonals and two segments that connects the middlepoints of opposite sides - 4 different lines of reflection.