The answer is -500, hope this helped
Complete question:
Para ingresar a la Universidad del Chocó se aplica una prueba de razonamiento que consta de 30 preguntas. Por cada respuesta correcta se asignan 5 puntos y por cada incorrecta (o no contestada) se restan 2 puntos. Si un participante obtuvo un puntaje de 94 puntos, ¿cuantas preguntas respondió bien?
Responder:
número de respuestas correctas = 22
Explicación paso a paso:
Dado lo siguiente:
Número total de preguntas = 30
Deje respuestas correctas = y; Respuestas incorrectas = n
Marca otorgada por y = 5
Marca deducida por n = 2
Si el total de preguntas = 30; luego
y + n = 30 - - - - (1)
Puntuación total obtenida = 94; luego
5y - 2n = 94 - - - (2)
De 1),
y + n = 30
y = 30 - n
Sustituya y = 30 - n en equ (2)
5 (30 - n) - 2n = 94
150 - 5n - 2n = 94
150 - 7n = 94
-7n = 94-150
-7n = - 56
n = 56/7
n = 8
Sustituir n = 8 en (1)
y + n = 30
y + 8 = 30
y = 30 - 8
y = 22
y = número de respuestas correctas = 22
n = número de respuestas incorrectas = 8
Answer:
<u>The area of the larger triangle is 315 inches²</u>
Step-by-step explanation:
1. Let's review all the information provided for answering the questions properly:
Pre-image triangle has a base of 7 inches and a height of 10 inches
Scale used : Factor of 3
2. What is the area of the larger triangle??
For calculating the area of the larger triangle, we use the scale this way:
Base = 7 inches * 3
21 inches
Height = 10 inches * 3
30 inches
Area of the larger triangle = 1/2 (Base * Height)
Area of the larger triangle = 1/2 (21 * 30)
<u>Area of the larger triangle = 630/2 = 315 inches²</u>
Class B has the most consistant sleep because there is less of a difference between 6.87 and 3.65 than the other classes.
For a 30-60-90 triangle the sides always have the same relationship
Short leg = a
Long leg = a√3
Hypotenuse = 2a
BC is the short leg of ∆ABC
Given BC = 2
BC = a
Therefor
a = 2
AB = 2a = 4
AC = a√3 = 2√3
For ∆ACD
As above AC = 2√3
Since AC is the hypotenuse of ∆ACD
2a = 2√3
a = √3
CD = a = √3
AD = a√3 = 3
For ∆BCD
As above
BC = 2
CD = √3
Since BC is the hypotenuse of ∆BCD
2a = 2
a = 1
DB = a = 1