Let number of caps =x
charge of one cap =$6
charge of x caps =6x
shipping fee =$25
total budget =$1000
let us make an inequality equation here,
Since amount cannot be greater than 1000 , so
25+6x ≤1000
6x≤975
x≤162.5
rounding off ,
x≤163
So she can buy maximum 163 caps
Answer:
The probability that all three have type B+ blood is 0.001728
Step-by-step explanation:
For each person, there are only two possible outcomes. Either they have type B+ blood, or they do not. The probability of a person having type B+ blood is independent of any other person. So we use the binomial probability distribution to solve this question.
Binomial probability distribution
The binomial probability is the probability of exactly x successes on n repeated trials, and X can only have two outcomes.

In which
is the number of different combinations of x objects from a set of n elements, given by the following formula.

And p is the probability of X happening.
The probability that a person in the United States has type B+ blood is 12%.
This means that 
Three unrelated people in the United States are selected at random.
This means that 
Find the probability that all three have type B+ blood.
This is P(X = 3).


The probability that all three have type B+ blood is 0.001728
Answer: 75
Step-by-step explanation: -14 + 98 =
Benchmark are numbers that are used as standards to which the rest of the data is compared to. When counting numbers using a number line, the benchmark numbers are the intervals written on the axis. For benchmark numbers of 10, the number line on top of the attached picture is shown. Starting from 170, the tick marks are added by 10, such that the next numbers are 180, 190, 200, and so on and so forth. When you want to find 410, just find the benchmark number 410.
The same applies to benchmark numbers in intervals of 100. If you want to find 170, used the benchmark numbers 100 and 200. Then, you estimate at which point represents 170. For 410, you base on the benchmark numbers 400 and 500.