Answer:
Multiply by ∛2 and translate the graph to left by 4 units.
Step-by-step explanation:
The initial function given is:
y = -∛(x - 4)
The transformed function is:
y = -∛(2x - 4)
Consider the initial function.
y = -∛(x - 4)
(Represented by Black line in the graph)
Multiply the function by ∛2. The function becomes:
y = -∛(x - 4) × ∛2
y = -∛(2)(x-4)
y = -∛(2x-8)
(Represented by Red line in the graph represents this function)
Translate the graph 4 units to the left by adding 4 to the x component:
y = -∛(2x-8+4)
y= -∛(2x - 4)
(Represented by Blue line in the graph)
Linear line?
Degree one polynomial? How do you want the answer? Do you have options?
Answer:
0.34285714285 i think
Step-by-step explanation:
we know that
The probability that "at least one" is the probability of exactly one, exactly 2, exactly 3, 4 and 5 contain salmonella.
The easiest way to solve this is to recognise that "at least one" is ALL 100% of the possibilities EXCEPT that none have salmonella.
If the probability that any one egg has 1/6 chance of salmonella
then
the probability that any one egg will not have salmonella = 5/6.
Therefore
for all 5 to not have salmonella
= (5/6)^5 = 3125 / 7776
= 0.401877 = 0.40 to 2 decimal places
REMEMBER this is the probability that NONE have salmonella
Therefore
the probability that at least one does = 1 - 0.40
= 0.60
the answer is
0.60 or 60%
Wait ill come right back at u let me solve