You can use the break apart strategy which would look like:
368+231= 300+60+8 + 200+30+1
Or you could just plain and simple add 368+231
The expected value of the amount of average snowfall for over 30 years is 86.7 inches with a standard deviation of 40.4 inches. To verify if this particular trend continues, we must check the significance value of the amount snowfall for the past four years.
Given that the snowfall for past years are as follows: 115.7 inches, 62.9 inches, 168.5 inches, and 135.7 inches.
Thus the mean of the sample would be: (115.7 + 62.9 + 168.5 + 135.7)/4 = 120.7 inches.
To compute for the z-score, we have
z-score = (x – μ) / (σ / √n)
where x is the computed/measured value, μ is the expected mean, σ is the standard deviation, and n is the number of samples.
Using the information we have,
z-score (z) = (120.7 - 86.7) / (40.4/ √4) = 1.68
In order to reject the null hyptohesis our probability value must be less than the significance level of 5%. For our case, since z = 1.68, P-value = 0.093 > 0.05.
Therefore, the answer is B.
Answer:
C
Step-by-step explanation:
6x^2 + 1 <= 0
6x^2 <= -1
x^2 <= -1/6
Since we cannot take the square root of a negative number, there is no solution.
<u>Answer:</u>
Consistent and dependent
<u>Step-by-step explanation:</u>
We are given the following equation:
1. 
2. 
3. 
For equation 1 and 3, if we take out the common factor (3 and 4 respectively) out of it then we are left with
which is the same as the equation number 2.
There is at least one set of the values for the unknowns that satisfies every equation in the system and since there is one solution for each of these equations, this system of equations is consistent and dependent.