Answer:
(-21,-19)

Standard form
Step-by-step explanation:
We are given the equation of circle

General equation of circle:

Centre: (-g,-f)
Radius: 
Compare the equation to find f, g and c from the equation



Centre: (-21,-19)
Radius (r) 
Standard form of circle:

The centre of circle at the point (-21,-19) and its radius is
.
The general form of the equation of a circle that has the same radius as the above circle is standard form.
The total population of the town is 2270 people.
Two equations will not have solution if they are parallel and have different y-intercepts. Parallel lines have the same slope. In a slope-intercept form, the equation of the line can be expressed as,
y = mx + b
where m is slope and b is the y-intercept.
Given: 3x - 4y = 2
Slope-intercept: y = 3x/4 - 1/2
A. 2y = 1.5x - 2
Slope-intercept: y = 3x/4 - 1
B. 2y = 1.5x - 1
Slope-intercept: y = 3x/4 - 1/2
C. 3x + 4y = 2
Slope-intercept: y = -3x/4 + 1/2
D. -4y + 3x = -2
Slope-intercept: y = 3x/4 + 1/2
Hence, the answers to this item are A and D.
Here is my answer. I left the latter question in a. as I don't actually know the answer. Anyway, I hope this is helpful although not complete.
Answer: In the beginning he was given 27 sweets.
Step-by-step explanation: The most logical thing to do is to solve it backwards, that is, from what he had at the end of the third day up till the beginning of the first day.
On the third day he ate one-third and had 8 sweets left over. To determine how many he started with on the third day, let the total on day three be called a. If one-third of a is eaten, then the left over which is two-thirds is 8. That is;
8/a = 2/3
By cross multiplication we now have
8 x 3 = 2a
24/2 = a
a = 12
Let the number of sweets he had on day two be called b. If he ate one-third of b and he had 12 left over, then the two-thirds left over is 12 and we now have;
12/b = 2/3
By cross multiplication we now have
12 x 3 = 2b
36 = 2b
36/2 = b
b = 18
Let the number of sweets he had on day one be called x. If he ate one-third of x and he had 18 left over, then the two-thirds left over is 18, and we now have;
18/x = 2/3
By cross multiplication we now have
18 x 3 = 2x
54 = 2x
x = 27
Therefore Tim was given 27 sweets at the beginning.