Given data :
a₃ = 9/16
aₓ = -3/4 · aₓ₋₁
Where x is the number of terms ('x' is also written as 'n')
To find the 7th term (a₇):
We know that aₓ = -3/4 · aₓ₋₁
So,
a₃ = -3/4 · a₃₋₁
a₃ = -3/4 · a₂
9/16 = -3/4 · a₂
a₂ = 9/16 × -4/3
a₂ = -36/48
a₂ = -3/4
Again,
aₓ = -3/4 · aₓ₋₁
a₄ = -3/4 · a₄₋₁
a₄ = -3/4 · a₃
a₄ = -3/4 · 9/16
a₄ = -27/64
a₄ = -27/64
For a₅,
aₓ = -3/4 · aₓ₋₁
a₅ = -3/4 · a₅₋₁
a₅ = -3/4 · a₄
a₅ = -3/4 × -27/64
a₅ = 81/256
For a₆,
aₓ = -3/4 · aₓ₋₁
a₆ = -3/4 · a₆₋₁
a₆ = -3/4 · a₅
a₆ = -3/4 × 81/256
a₆ = -243/1024
For a₇,
aₓ = -3/4 · aₓ₋₁
a₇ = -3/4 · a₇₋₁
a₇ = -3/4 · a₆
a₇ = -3/4 × -243/1024
a₇ = 729/4096
Answer:
- 5.8206 cm
- 10.528 cm
- 23.056 cm^2
Step-by-step explanation:
(a) The Law of Sines can be used to find BD.
BD/sin(48°) = BD/sin(50°)
BD = (6 cm)(sin(48°)/sin(60°)) ≈ 5.82064 cm
__
(b) We can use the Law of Cosines to find AD.
AD^2 = AB^2 +BD^2 -2·AB·BD·cos(98°) . . . . . angle ABD = 48°+50°
AD^2 ≈ 110.841
AD ≈ √110.841 ≈ 10.5281 . . . cm
__
(c) The area of ∆ABD can be found using the formula ...
A = ab·sin(θ)/2 . . . . . where a=AB, b=BD, θ = 98°
A = (8 cm)(5.82064 cm)sin(98°)/2 ≈ 23.0560 cm^2
_____
Angle ABD is the external angle of ∆BCD that is the sum of the remote interior angles BCD and BDC. Hence ∠ABD = 48° +50° = 98°.
Answer:
B. (3, 0)
Step-by-step explanation:
The x-intercept is the point where the graph of the function meets the x-axis.
At x-intercept, y=0 or f(x)=0
So look through the table and find where f(x)=0.
From the table, f(x)=0 at x=3.
We write this as an ordered pair.
Therefore the x-intercept is (3,0)
The correct choice is B.
Answer:
its 8 2/3
Step-by-step explanation: I got it right on edg