Answer: Option D is not true of hydraulic valves. A hydraulic valve is a device that can change the opening degree of liquid flow path
Explanation:
The pilot check valve allows flow of liquid in one direction and blocks flow in the opposite direction
Answer:
a)Wt =25.68 lbf
b)Wt = 150 lbf
F= 899.59 N
Explanation:
Given that

m= 150 lbm
a)
Weight on the spring scale(Wt) = m g
We know that

Wt = 150 x 5.48/32 lbf
Wt =25.68 lbf
b)
On the beam scale
This is scale which does not affects by gravitational acceleration.So the wight on the beam scale will be 150 lbf.
Wt = 150 lbf
If the plane is moving upward with acceleration 6 g's then the for F
F = m a
We know that


a=6 g's

So
F = 90 x 9.99 N
F= 899.59 N
Answer:
Explanation:
A plane wall of thickness 2L=40 mm and thermal conductivity k=5W/m⋅Kk=5W/m⋅K experiences uniform volumetric heat generation at a rateq
˙
q
q
˙
, while convection heat transfer occurs at both of its surfaces (x=-L, +L), each of which is exposed to a fluid of temperature T∞=20∘CT
∞
=20
∘
C. Under steady-state conditions, the temperature distribution in the wall is of the form T(x)=a+bx+cx2T(x)=a+bx+cx
2
where a=82.0∘C,b=−210∘C/m,c=−2×104C/m2a=82.0
∘
C,b=−210
∘
C/m,c=−2×10
4
C/m
2
, and x is in meters. The origin of the x-coordinate is at the midplane of the wall. (a) Sketch the temperature distribution and identify significant physical features. (b) What is the volumetric rate of heat generation q in the wall? (c) Determine the surface heat fluxes, q
′′
x
(−L)q
x
′′
(−L) and q
′′
x
(+L)q
x
′′
(+L). How are these fluxes related to the heat generation rate? (d) What are the convection coefficients for the surfaces at x=-L and x=+L? (e) Obtain an expression for the heat flux distribution q
′′
x
(x)q
x
′′
(x). Is the heat flux zero at any location? Explain any significant features of the distribution. (f) If the source of the heat generation is suddenly deactivated (q=0), what is the rate of change of energy stored in the wall at this instant? (g) What temperature will the wall eventually reach with q=0? How much energy must be removed by the fluid per unit area of the wall (J/m2)(J/m
2
) to reach this state? The density and specific heat of the wall material are 2600kg/m32600kg/m
3
and 800J/kg⋅K800J/kg⋅K, respectively.
Answer:
Not reasonable.
Explanation:
To solve this problem it is necessary to take into account the concepts related to the performance of a reversible refrigerator. The coefficient of performance is basically defined as the ratio between the heating or cooling provided and the electricity consumed. The higher coefficients are equivalent to lower operating costs. The coefficient can be greater than 1, because it is a percentage of the output: losses, other than the thermal efficiency ratio: input energy. For a reversible refrigerator the coefficient is given by

Where,
High temperature
Low Temperature
With our values previous given we can find it:




With these values we can now calculate the coefficient of performance:


At the same time we can calculate the work consumption of the refrigerator, this is

Where,
Required power input
t = time to remove heat from a cool to water medium



In this way we can calculate the coefficient of the refrigerator directly:

Where,
Q = Amoun of heat rejected


Comparing the values of both coefficients we have that the experiments are NOT reasonable, because the coefficient of a refrigerator is high compared to coefficient of reversible refrigerator.
Answer:
Water enters a centrifugal pump axially at atmospheric pressure at a rate of 0.12 m3/s and at a velocity of 7 m/s, and leaves in the normal direction along the pump casing, as shown in Fig. PI3-39. Determine the force acting on the shaft (which is also the force acting on the bearing of the shaft) in the axial direction.
Step-by-step solution:
Step 1 of 5
Given data:-
The velocity of water is .
The water flow rate is.