Answer: D. n + q = 20
5n + 25q = 300
Step-by-step explanation:
Let n represent the number of nickels that you have.
Let q represent the number of quarters that you have.
Suppose you have 20 coins. It means that
n + q = 20
The total value of the coins is $3. The value of a quarter is $0.25 and the value if a nickel is $0.05. Therefore, the equation would be
0.05n + 0.25q = 3
Multiplying both sides of the equation by 100, it becomes
5n + 25q = 300
The correct option is
D. n + q = 20
5n + 25q = 300
A stuntman jumping off a 20-m-high building is modeled by the equation h = 20 – 5t2, where t is the time in seconds. A high-speed camera is ready to film him between 15 m and 10 m above the ground. For which interval of time should the camera film him?
Answer:

Step-by-step explanation:
Given:
A stuntman jumping off a 20-m-high building is modeled by the equation
-----------(1)
A high-speed camera is ready to making film between 15 m and 10 m above the ground
when the stuntman is 15m above the ground.
height
Put height value in equation 1





We know that the time is always positive, therefore 
when the stuntman is 10m above the ground.
height
Put height value in equation 1







Therefore ,time interval of camera film him is 
I end up with 625pi(27^2-14^2)
=635pi(504)
=315000pi lb-ft
Answer:
Step-by-step explanation:
that the triangular prism has more volume
Answer:
Step-by-step explanation:
We would set up the hypothesis test. This is a test of a single population mean since we are dealing with mean
For the null hypothesis,
H0: µ = 5000
For the alternative hypothesis,
H1: µ > 5000
Since the population standard deviation is given, z score would be determined from the normal distribution table. The formula is
z = (x - µ)/(σ/√n)
Where
x = sample mean
µ = population mean
σ = population standard deviation
n = number of samples
From the information given,
µ = 5000
x = 5430
σ = 600
n = 40
z = (5430 - 5000)/(600/√40) = 4.53
Looking at the normal distribution table, the probability corresponding to the z score is < 0.0001
Since alpha, 0.05 > than the p value, then we would reject the null hypothesis. Therefore, at a 5% level of significance, it can be concluded that they walked more than the mean number of 5000 steps per day.