answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
trapecia [35]
2 years ago
5

A 75kg man climbs the stairs to the fifth floor of a building. A total hieght of 16m. His potential energy has increased by

Physics
1 answer:
yKpoI14uk [10]2 years ago
8 0

Answer:

11760 joules

Explanation:

Given

Mass (m) = 75kg

Height (h) = 16m

Required

Determine the increment in potential energy (PE)

This is calculated as thus:

PE = mgh

Where g = 9.8m/s²

Substitute values for m, g and h.

P.E = 75 * 9.8 * 16

P.E = 11760 joules

You might be interested in
A pair of glasses is dropped from the top of a 32.0m stadium. A pen is dropped 2.Os later. How high above the ground is the pen
Svetllana [295]

Answer:

h_p = 30.46\ m

Explanation:

<u>Free Fall Motion</u>

A free-falling object refers to an object that is falling under the sole influence of gravity. If the object is dropped from a certain height h, it moves downwards until it reaches ground level.

The speed vf of the object when a time t has passed is given by:

v_f=g\cdot t

Where g = 9.8 m/s^2

Similarly, the distance y the object has traveled is calculated as follows:

\displaystyle y=\frac{g\cdot t^2}{2}

If we know the height h from which the object was dropped, we can solve the above equation for t:

\displaystyle t=\sqrt{\frac{2\cdot y}{g}}

The stadium is h=32 m high. A pair of glasses is dropped from the top and reaches the ground at a time:

\displaystyle t_1=\sqrt{\frac{2\cdot 32}{9.8}}=2.56\ sec

The pen is dropped 2 seconds after the glasses. When the glasses hit the ground, the pen has been falling for:

t_2=2.56 - 2 = 0.56\ sec

Therefore, it has traveled down a distance:

\displaystyle y=\frac{9.8\cdot 0.56^2}{2} = 1.54\ m

Thus, the height of the pen is:

h_p = 32 - 1.54\Rightarrow h_p=30.46\ m

8 0
2 years ago
In preparation for a demonstration, your professor brings a 1.50−L bottle of sulfur dioxide into the lecture hall before class t
mina [271]

Answer:

n = 2.06 moles

Explanation:

The absolute pressure at depth of 27 inches can be calculated by:

Pressure = Pressure read + Zero Gauge pressure

Zero Gauge pressure = 14.7 psi

Pressure read = 480 psi

Total pressure = 480 psi + 14.7 psi = 494.7 psi

P (psi) = 1/14.696  P(atm)

So, Pressure = 33.66 atm

Temperature = 25°C

The conversion of T( °C) to T(K) is shown below:

T(K) = T( °C) + 273.15  

So,  

T = (25 + 273.15) K = 298.15 K  

T = 298.15 K  

Volume = 1.50 L

Using ideal gas equation as:

PV=nRT

where,  

P is the pressure

V is the volume

n is the number of moles

T is the temperature  

R is Gas constant having value = 0.0821 L.atm/K.mol

Applying the equation as:

33.66 atm × 1.50 L = n × 0.0821 L.atm/K.mol × 298.15 K  

⇒n = 2.06 moles

7 0
2 years ago
Some plants disperse their seeds when the fruit splits and contracts, propelling the seeds through the air. The trajectory of th
Anton [14]

Answer:

Option B, 93 cm

Explanation:

An diagram of the seed's motion is attached to this solution.

This is very close to a projectile motion question. And the quantity to be calculated, how far along the grant a seed released would travel is called the Range.

And this would be obtained from the equations of motion,

First of, the height of the plant is related to some quantities of the motion with this relation.

H = u(y) t + 0.5g(t^2)

U(y) = initial vertical component of velocity = 0 m/s, H = height at which motion began, = 20cm = 0.2 m

That means t = √(2H/g)

The horizontal distance covered, R,

R = u(x) t + 0.5g(t^2) = u(x) t (the second part of the equation goes to zero as the vertical component of the acceleration of this motion is 0)

(substituting the t = √(2H/g) derived from above

R = u(x) √(2H/g)

Where u(x) = the initial horizontal component of the bomb's velocity = maximum initial speed, that is, 4.6 m/s, H = vertical height at which the seed was released = 20 cm = 0.2 m, g = acceleration due to gravity = 9.8 m/s2

R = 4.6 √(2×0.2/9.8) = 0.929 m = 0.93 m = 93 cm. Option B.

QED!

6 0
2 years ago
Read 2 more answers
A baseball player exerts a force of 100 N on a ball for a distance of 0.5 mas he throws it. If the ball has a mass of 0.15 kg, w
Aloiza [94]

Answer:

25.82 m/s

Explanation:

We are given;

Force exerted by baseball player; F = 100 N

Distance covered by ball; d = 0.5 m

Mass of ball; m = 0.15 kg

Now, to get the velocity at which the ball leaves his hand, we will equate the work done to the kinetic energy.

We should note that work done is a measure of the energy exerted by the baseball player.

Thus;

F × d = ½mv²

100 × 0.5 = ½ × 0.15 × v²

v² = (2 × 100 × 0.5)/0.15

v² = 666.67

v = √666.67

v = 25.82 m/s

4 0
1 year ago
Derive an equation for the acceleration of block 3 for any arbitrary values of m3 and m2. Express your answer in terms of m3, m2
dybincka [34]

Complete question is;

Block 1 is resting on the floor with block 2 at rest on top of it. Block 3, at rest on a smooth table with negligible friction, is attached to block 2 by a string that passes over a pulley, as shown in the attachment below. The string and pulley have negligible mass.

Block 1 is removed without disturbing block 2.

Derive an equation for the acceleration of block 3 for any arbitrary values of m3 and m2. Express your answer in terms of m3, m2, and physical constants as appropriate.

Answer:

a = (m2)g/(m3 + m2)

Explanation:

Looking at the attached image, if we consider the free body diagram for block 3, by using Newton's first law of motion, we will arrive at the formula;

T = (m3)a - - - (eq 1)

where;

T is the tension in the string

a is acceleration

m3 is mass of block 3

Meanwhile doing the same with Block 2, the free body diagram would give us the formula; (m2)g - T = (m2)a

Making T the subject gives us;

T = (m2)g - (m2)a - - - (eq 2)

where;

g is acceleration due to gravity

T is the tension in the string

a is acceleration

m2 is mass of block 2

To solve for the acceleration, we will just substitute (m3)a for T in eq 2.

Thus;

(m3)a = (m2)g - (m2)a

(m3)a + (m2)a = (m2)g

a(m3 + m2) = (m2)g

a = (m2)g/(m3 + m2)

3 0
2 years ago
Other questions:
  • A boy is exerting a force of 70 N at a 50-degree angle on a lawn mower. He is accelerating at 1.8 m/s2. Round the answers to the
    6·2 answers
  • A small smooth object slides from rest down a smooth inclined plane inclined at 30degrees horizontal.What is the acceleration do
    5·1 answer
  • The acceleration of an object as a function of time is given by a(t) = (1.00 m/s2)t2. If displacement of the object between time
    7·1 answer
  • a crowbar of 2 meter is used to lift an object of 800N if the effort arm is 160cm , calculste the effort applied
    10·1 answer
  • A person driving a car suddenly applies the brakes. The car takes 4 s to come to rest while traveling 20 m at constant accelerat
    13·1 answer
  • A highly charged piece of metal (with uniform potential throughout) tends to spark at places where the radius of curvature is sm
    12·1 answer
  • pitot tube on an airplane flying at a standard sea level reads 1.07 x 105 N/m2. What is the velocity of the airplane?
    15·1 answer
  • Two very large parallel metal plates, separated by 0.20 m, are connected across a 12-V source of potential. An electron is relea
    15·1 answer
  • The diagram shows movement of thermal energy. At bottom a fire has red curved lines labeled Y with arrowheads pointing upward to
    12·2 answers
  • An object of mass m moves horizontally, increasing in speed from 0 to v in a time t. The power necessary to accelerate the objec
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!