answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ExtremeBDS [4]
2 years ago
8

prove algebraically that the straight line with equation x = 2y + 5 is a tangent to the circle with equation x^2 + y^2 = 5, i ha

ve 3/5 marks and i tried with perpendicular gradient.

Mathematics
2 answers:
Brums [2.3K]2 years ago
8 0

Answer:

I dont even know

Step-by-step explanation:

too complicated

Kamila [148]2 years ago
5 0

Answer:

You have to use the discriminant b^2 -4ac =0 because lines that cut a circle only once are tangents.

Step-by-step explanation:

I think you can use the perpendicular gradient, but it'll be more tedious because then you'll have to prove that the line touching the circle is perpendicular to the line from the centre to the circle to the point of intersection. You'll have to form an equation using the coordinates of the centre of the circle and the point of intersection. You probably had a careless mistake/ calculation error in this process.

Instead, try

1. equating the line to the circle (which you did), then

2. let the coefficient of x^2 be a, the coefficient of x be b, and the constant terms be c.

3. simplify b^2-4ac

3. prove that b^2-4ac=0 because there is only one real and distinct root, hence there is only one point of intersection.

You might be interested in
If Jose earns $1700 this year selling T-shirt’s he screen prints in his garage what taxes would he need to pay?
Marta_Voda [28]

Answer:

State sales and income tax

Step-by-step explanation:

He pays income tax based on the $1700 he got when running his own business of selling T-shirt’s he screen prints in his garage and he also needs to pay for the State sales tax on each T-shirt sold to the state that his business is located in.

Hope it will find you well

3 0
1 year ago
Read 2 more answers
Susie has 20 pieces of candy in a bag: 6 mint sticks, 5 jelly treats, and 9 fruit tart chews. If she eats one piece every 9 minu
motikmotik

Answer:

Step-by-step explanation:

7 fruit tart chews. If he eats one piece every 10 minutes, what is the probability his first two pieces will be a jelly treat and a mint stick? ... First you add all the candies together to get 20 in the bag 2+11+7=20 jelly treat: ... Paul has a bag with 6 mint sticks, 9 jelly treats, and 5 fruit tart chews. If he eats one ...

4 0
2 years ago
Jennet graphs the inequality Negative 6 less-than x on the number line below.
AVprozaik [17]

Answer:

d mark me as branilyest plz

Step-by-step explanation:

5 0
1 year ago
Please answer all of them need this
VikaD [51]

First Question

For a better understanding of the solution provided here please find the first attached file which has the diagram of the the isosceles trapezoid.

We dropped perpendiculars from C and D to intersect AB at Q and P respectively.

As can be seen in \Delta BCQ, we can easily find the values of CQ and BQ.

Since, Sin(75^0)=\frac{CQ}{8}

\therefore CQ=8\times Sin(75^0)\approx 7.73 ft

In a similar manner we can find BQ as:

Cos(75^0)=\frac{BQ}{8}

BQ\approx2.07 ft

All these values can be found in the diagram attached.

Thus, because of the inherent symmetry of the isosceles trapezoid, PQ can be found as:

PQ=22-(AP+QB)=22-(2.07+2.07)=17.86

Let us now consider\Delta AQC

We can apply the Pythagorean Theorem here to find the length of the diagonal AC which is the hypotenuse of \Delta AQC.

AC=\sqrt{(AQ)^2+(QC)^2}=\sqrt{(AP+PQ)^2+(QC)^2}=\sqrt{(2.07+17.86)^2+(7.73)^2}\approx21.38 feet.

Thus, out of the given options, Option B is the closest and hence is the answer.

Second Question

For this question we can directly apply the formula for the area of a triangle using sines which is as:

Area=\frac{1}{2}(First Side)(Second Side)(Sine of the angle between the two sides)

Thus, from the given data,

Area=\frac{1}{2}\times 218.5\times 224.5\times sin(58.2^0)\approx20845 m^2

Therefore, Option D is the correct option.

Third Question

For this question we will apply the Sine Rule to the \Delta ABC given to us.

Thus, from the triangle we will have:

\frac{AB}{Sin(\angle C)}=\frac{BC}{Sin(\angle A)}

\frac{c}{Sin(\angle C)}=\frac{a}{Sin(\angle A)}

\frac{17}{Sin(25^0)}=\frac{a}{Sin(45^0)}

This gives a to be:

a\approx28.44

Which is not close to any of the given options.

Fourth Question

Please find the second attachment for a better understanding of the solution provided her.

As can be clearly seen from the attached diagram, we can apply the Cosine Rule here to find the return distance of the plane which is CA.

AC=\sqrt{(AB)^2+(BC)^2-2(AB)(BC)\times Cos(\angle B)}

\therefore AC=\sqrt{(172.20)^2+(111.64)^2-2(172.20)(111.64)\times Cos(177.29^0)}\approx283.8 miles.

Thus, Option D is the answer.





8 0
2 years ago
Read 2 more answers
The following data represent the length of life in
Natali [406]

Answer:

(a) For the stem-and-leaf plot, we need to organise all data in columns, one column is the stem and a second column is the leaf, but in this case, stems are going to be the digits to the left of the decimal point, and leafs are the digits to the right of the decimal point:

<u>Stem</u>            <u> Leaf </u>

0             2 2 2 3 3 4 5 7

1              0 2 3 5 5 8

2             0 3 5

3             0 3

4             0 5 7

5             0 5 6 9

6             0 0 0 5

(b) Relative frequency distribution.

Remember that, a relative frequency is calculated dividing the absolute frequency by the total data, in this case, we approximated to the hundredth.

Length of life    Absolute Frequency      Relative Frequency     % Relative Freq.

0.2                              3                                        0.1                                10

0.3                              2                                        0.07                              7

0.4                              1                                         0.03                              3

0.5                              1                                         0.03                              3

0.7                              1                                         0.03                              3

1.0                               1                                         0.03                              3

1.2                               1                                         0.03                              3

1.3                               1                                         0.03                              3

1.5                               2                                        0.07                              7

1.8                               1                                         0.03                              3

2.0                              1                                         0.03                              3

2.3                              1                                         0.03                              3

2.5                              1                                         0.03                              3

3.0                              1                                         0.03                              3

3.3                              1                                         0.03                              3

4.0                              1                                         0.03                              3

4.5                              1                                         0.03                              3

4.7                              1                                         0.03                              3

5.0                              1                                         0.03                              3

5.5                              1                                         0.03                              3

5.6                              1                                         0.03                              3

5.9                              1                                         0.03                              3

6.0                              3                                        0.10                               10

6.5                              1                                         0.03                              3

Total                          30                                          

(c)

To calculate the sample mean we need to sum all number, which results: 83.9. Then, we divide this result to the total 30, which result: 2.80.

The sample range is the difference between the highest and the lowest value: 6.5 - 0.2 = 6.3.

The sample standard deviation is calculated trough the following process:

Step 1: Subtract the mean from each number.

Step 2: Square each result.

Step 3: Add the squared deviations.

Step 4: Divide the sum by one less the total.

Step 5: Take the square root, and there you have it.

Doing this steps, the result is 2.22.

This last process is attached:

4 0
1 year ago
Other questions:
  • 243.875 rounded to the nearest tenth, hundredth, ten, and hundred on a number line
    11·2 answers
  • a machine factory produces 2 parts per second. one shift is 10 hours long. what is the production rate, in parts per shift? ente
    14·2 answers
  • John is working part-time in an office. He works 30 hours per week and earns $600 each week. He currently has $2,700 in a saving
    13·1 answer
  • The student council at Spend too much High School is planning a school dance. The table below shows the budget for the dance.
    10·2 answers
  • The weekly salary paid to employees of a small company that supplies​ part-time laborers averages ​$750 with a standard deviatio
    8·1 answer
  • Given ΔACD and ΔABE, what is AB?
    6·1 answer
  • Tricia is going to write Patterns A, B, and C using the rule add 15. The first
    10·1 answer
  • What is the recursive formula of the geometric sequence? 1/2, 3/4, 9/8, 27/16,...
    7·1 answer
  • charlotte owns two entertainment websites. Here are some details about those websites for one entire month: Website A Website B
    5·2 answers
  • Increase £16470.45 by 3.5% answer rounded to 2 DP.
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!