Volume of cone = 1/3 x pi x r^2 x h
where r = 5 ft and h = 16ft
Volume = 1/3 x pi x 5^2 x 16 = 400/3 π ft^3
Draw a simple branch diagram to work the probabilities out.
You find that the chance of a poisonous mushroom is 0.08 and the chance of a red poisonous is 0.04.
So the probability that a poisonous mushroom is red is 1/2 or 0.5.
You're looking for the extreme values of
subject to the constraint
.
The target function has partial derivatives (set equal to 0)


so there is only one critical point at
. But this point does not fall in the region
. There are no extreme values in the region of interest, so we check the boundary.
Parameterize the boundary of
by


with
. Then
can be considered a function of
alone:



has critical points where
:



but
for all
, so this case yields nothing important.
At these critical points, we have temperatures of


so the plate is hottest at (1, 0) with a temperature of 14 (degrees?) and coldest at (-1, 0) with a temp of -12.
The are 6 possible outcomes because there are 6 tiles.
<span>The number of dollars collected can be modelled by both a linear model and an exponential model.
To calculate the number of dollars to be calculated on the 6th day based on a linear model, we recall that the formula for the equation of a line is given by (y - y1) / (x - x1) = (y2 - y1) / (x2 - x1), where (x1, y1) = (1, 2) and (x2, y2) = (3, 8)
The equation of the line representing the model = (y - 2) / (x - 1) = (8 - 2) / (3 - 1) = 6 / 2 = 3
y - 2 = 3(x - 1) = 3x - 3
y = 3x - 3 + 2 = 3x - 1
Therefore, the amount of dollars to be collected on the 6th day based on the linear model is given by y = 3(6) - 1 = 18 - 1 = $17
To calculate the number of dollars to be calculated on the 6th day based on an exponential model, we recall that the formula for exponential growth is given by y = ar^(x-1), where y is the number of dollars collected and x represent each collection day and a is the amount collected on the first day = $2.
8 = 2r^(3 - 1) = 2r^2
r^2 = 8/2 = 4
r = sqrt(4) = 2
Therefore, the amount of dollars to be collected on the 6th day based on the exponential model is given by y = 2(2)^(5 - 1) = 2(2)^4 = 2(16) = $32</span>