Answer:
- 5.8206 cm
- 10.528 cm
- 23.056 cm^2
Step-by-step explanation:
(a) The Law of Sines can be used to find BD.
BD/sin(48°) = BD/sin(50°)
BD = (6 cm)(sin(48°)/sin(60°)) ≈ 5.82064 cm
__
(b) We can use the Law of Cosines to find AD.
AD^2 = AB^2 +BD^2 -2·AB·BD·cos(98°) . . . . . angle ABD = 48°+50°
AD^2 ≈ 110.841
AD ≈ √110.841 ≈ 10.5281 . . . cm
__
(c) The area of ∆ABD can be found using the formula ...
A = ab·sin(θ)/2 . . . . . where a=AB, b=BD, θ = 98°
A = (8 cm)(5.82064 cm)sin(98°)/2 ≈ 23.0560 cm^2
_____
Angle ABD is the external angle of ∆BCD that is the sum of the remote interior angles BCD and BDC. Hence ∠ABD = 48° +50° = 98°.
We have an arithmetic progression:
Nth=an
an=a₁+(n-1)d
a₁ is the first term.
n=number of terms.
d=common difference
10,17,24,31...
a₁=10
d=a₂-a₁=17-10=7
Therefore:
Nth=an
an=a₁+(n-1)d
an=10+(n-1)7
an=10+7n-7
an=7n+3.
Therefore: the formula for the nth is, an=a+(n-1), in this case; an=7n+3,
To check:
a₁=7*1+3=10
a₂=7*2+3=17
a₃=7*3+3=24
a₄=7*4+3=31
a₅=7*5+3=38.......
0.07 * 1.22
Is equal to 0.0854
<span>The value of r represents the reference angle when plotting a point in polar coordinates.
False
</span>