Answer:
The correct option is C. Rare alleles tend to remain rare even when they are dominant.The distribution of a gene among individuals is determined by mating and environmental factors.
Explanation:
Most people believe that a rare allele would only be recessive. But this is not correct. A rare allele can be dominant. The frequency of an allele to occur in a population will depend on the environmental factors. The alleles which code for traits that are best suitable for living in an environment will be seen in more abundance. The frequency of an allele to occur in a population also depends on the breeding trends of the population.
Answer: Amino acids are absorbed via a Sodium cotransporter, in a similar mechanism to the monosaccharides.
Explanation: Amino acids are absorbed via a Sodium cotransporter, in a similar mechanism to the monosaccharides. They are then transported across the alabaster membrane via facilitated diffusion. Di and tripeptides are absorbed via separate H+ dependent cotransporters and once inside the cell are hydrolyzed to amino acids.
Answer:
All crosses and proportions, genotypes and phenotypes are attached.
Explanation:
a. Within living organisms, staining is a characteristic governed by a polygenic inheritance, which means that there is more than one gene involved in the staining process. as you already know, each gene has two alleles, if a trait is controlled by 2 genes, it means that we will have 4 alleles at the crosses.
From the description between dominance and recessivity between the alleles that control the colors of the pepper, shown in the question above, we can see that for the crossing between a red pepper and a green pepper, being able to generate a completely orange offspring, it would be necessary that the genotype of the parent peppers was: Red: RGRG, green: rgrg.
This would generate an orange-colored RrGg offspring, as you can see at the F1 crossing.
b. When individuals of F1 offspring are crossed, the combination of alleles and the determination of genotypes and phenotypes becomes much more complex, because instead of 4 alleles, we will have the combination of 16 alleles among themselves. Once again we will need to rely on the description of dominance and recessivity shown in the question above, so that from the crossing between the alleles of each gene, we can reach a conclusion, as you can see in the F2 crossing.
Answer:
Volume= 4 cm³
Density= 2 g/cm³
Explanation:
We have the following data:
volume= V= 8 cm³
mass= m= 16 g
The density is the mass per volume of a substance, so the density of the rock is:
density= d= 16 g/8 cm³= 2 g/cm³
When we cut the rock in half, we have a half volume and a half mass:
V= 8 cm³/2= 4 cm³
m= 16 g/2= 8 g
But the density is not altered because it is an intrisic property - it does not change with the amount of subtance. Thus, the density of a half rock is:
d = m/V= 8 g/4 cm³= 2 g/cm³