Answer: $144.50
Step-by-step explanation:
is/of = %/100
x/85 = 170/100
14,450 = 100x
divide by 100
x = $144.50
A sample size of 60 is required.
We use the formula

We first find the z-score associated with this level of confidence:
Convert 99% to a decimal: 99/100 = 0.99
Subtract from 1: 1-0.99 = 0.01
Divide by 2: 0.01/2 = 0.005
Subtract from 1: 1-0.005 = 0.995
Using a z-table (http://www.z-table.com) we see that this value is equally distant from 2.57 and 2.58; therefore we will use 2.575:
Let S = number of small yogurts ($2 each).
Let M = number of medium yogurts ($3 each)
Let L = number of large yogurts ($5 each)
Total yogurts is 27, therefore
S + M + L = 27
Total revenue generated is $98, therefore
2S + 3M +5L = 98
There are five more large yogurts than small yogurts, therefore
L = S + 5, or
-S + L = 5
These three equations may be written as the matrix equation
[ 1 1 1 | |S| |27|
| 2 3 5 | |M| = |98|
| -1 0 1 | |L| | 5|
The determinant of the matrix is
D = 3 - (2+5) + 3 = -1.
Solve with Cramer's Rule to obtain
S = -[27*3) - (98-25) - 15]
= 7
M = -[(98-25) - 27(2+5) + (10+98)]
= 8
L = -[15 - (10+98) + 27(3)]
= 12
Answer: 7 small, 8 medium, 12 large yogurts.
Answer:
<h2>It must be shown that both j(k(x)) and k(j(x)) equal x</h2>
Step-by-step explanation:
Given the function j(x) = 11.6
and k(x) =
, to show that both equality functions are true, all we need to show is that both j(k(x)) and k(j(x)) equal x,
For j(k(x));
j(k(x)) = j[(ln x/11.6)]
j[(ln (x/11.6)] = 11.6e^{ln (x/11.6)}
j[(ln x/11.6)] = 11.6(x/11.6) (exponential function will cancel out the natural logarithm)
j[(ln x/11.6)] = 11.6 * x/11.6
j[(ln x/11.6)] = x
Hence j[k(x)] = x
Similarly for k[j(x)];
k[j(x)] = k[11.6e^x]
k[11.6e^x] = ln (11.6e^x/11.6)
k[11.6e^x] = ln(e^x)
exponential function will cancel out the natural logarithm leaving x
k[11.6e^x] = x
Hence k[j(x)] = x
From the calculations above, it can be seen that j[k(x)] = k[j(x)] = x, this shows that the functions j(x) = 11.6
and k(x) =
are inverse functions.
We have an arithmetic progression:
Nth=an
an=a₁+(n-1)d
a₁ is the first term.
n=number of terms.
d=common difference
10,17,24,31...
a₁=10
d=a₂-a₁=17-10=7
Therefore:
Nth=an
an=a₁+(n-1)d
an=10+(n-1)7
an=10+7n-7
an=7n+3.
Therefore: the formula for the nth is, an=a+(n-1), in this case; an=7n+3,
To check:
a₁=7*1+3=10
a₂=7*2+3=17
a₃=7*3+3=24
a₄=7*4+3=31
a₅=7*5+3=38.......