The answers are as follows:
1. <span>An inhibitor has a structure that is so similar to the substrate that it can bond to the enzyme just like the substrate: t</span>his is called competitive inhibitor. A competitive inhibitor will compete with the substrate for the active site of the enzyme and bind to the active site, thus incapacitating the substrate from binding to the active site.
2. An inhibitor binds to a site on the enzyme that is not the active site: this is called non competitive inhibitors. Non competitive inhibitors bind to other site in the enzyme which is not the active site of the enzyme. The binding of the inhibitor changes the conformation of the enzyme as well as the active site, thus making it impossible for the substrate to bind to the enzyme effectively.
3. <span>usually, a(n) inhibitor forms a covalent bond with an amino acid side group within the active site, which prevents the substrate from entering the active site or prevents catalytic activity: this is called irreversible or permanent inhibition. Permanent inhibitors form covalent bonds with the enzyme and prevent substrate from binding to the enzyme.
4. T</span><span>he competitive inhibitor competes with the substrate for the ACTIVE SITE on the enzyme: The active site of an enzyme is the place where the substrate normally bind in order to activate a enzyme. Competitive inhibitors are those inhibitors that compete with the substrate for the active site of the enzyme and prevent the substrate from binding there.
5. W</span><span>hen the noncompetitive inhibitor is bonded to the enzyme, the shape of the ENZYME is distorted. The non competitive inhibitors are those inhibitors that bind to other places in the enzyme instead of the active site. The binding of the non competitive inhibitor usually distort the shape and the conformation of the enzyme thus preventing the substrate from binding to it effectively.
6. E</span><span>nzyme inhibitors disrupt normal interactions between an enzyme and its SUBSTRATE. The principal function of enzyme inhibitor is to prevent the substrate from binding to the appropriate enzyme. This is usually done in the human system in order to regulate the activities of enzymes.</span>
The DNA, mRNA and tRNA are the essential nucleic acids that initiate protein synthesis. The DNA contains the genetic code of our human body in the form of chromosomes. It is composed of nucleic acids like uracil (U), guanine (G), adenine (A) and cytosine (C). The messenger RNA or mRNA carries this code called codons expressed in three-letter codes. Each amino acid has its own assignment of code. The mRNA carries this code to the ribosome which is the site for protein synthesis. The translational RNA or tRNA contains anti-codons to translate the codes in the mRNA into amino acids that link together to form proteins.
Nucleus controls the cell, it tells the cell what to do, similar to a brain. Rough ER or Ribosome ER creates the proteins in the cell. Golgi Apparatus packages macromolecules like lipids and proteins for transport.
Answer:
The correct answer is "the temperature is above 23 °C but not exceeding 40 °C".
Explanation:
The main function of virgin queens in a bee's hive is reproduction. Normally virgin queens do not exit the hive except to perform mating flight(s), which normally are done with 10–20 drone bees and then return to the hive as mated queen bees. Usually virgin queens perform her mating flight(s) in ideal temperature conditions, which are with a temperature above 23 °C but not exceeding 40 °C.
Where is the options ???!!!