Answer:
=(k−1)*P(X>k−1) or (k−1)365k(365k−1)(k−1)!
Step-by-step explanation:
First of all, we need to find PMF
Let X = k represent the case in which there is no birthday match within (k-1) people
However, there is a birthday match when kth person arrives
Hence, there is 365^k possibilities in birthday arrangements
Supposing (k-1) dates are placed on specific days in a year
Pick one of k-1 of them & make it the date of the kth person that arrives, then:
The CDF is P(X≤k)=(1−(365k)k)/!365k, so the can obtain the PMF by
P(X=k) =P (X≤k) − P(X≤k−1)=(1−(365k)k!/365^k)−(1−(365k−1)(k−1)!/365^(k−1))=
(k−1)/365^k * (365k−1) * (k−1)!
=(k−1)*(1−P(X≤k−1))
=(k−1)*P(X>k−1)
Answer:
Natural numbers (integers greater than zero)
X = 3, 5, 4, 4, 3
Step-by-step explanation:
The least number of cars that can be observed in this experiment is 1, if the first car turns left. On the other hand, the experiment could go on forever if no car ever turns left, thus the highest number of cars approaches infinite.
The possible values of X are integers greater than zero, which are known as the Natural numbers.
If X = number of cars observed, simply count the number of letters in each outcome for the value of X:
Outcome = RRL, AARRL, AARL, RRAL, ARL
X = 3, 5, 4, 4, 3
The item(letter) that is different from the other three is H.
The other letters(A, I, E) are all vowels, while H is not.