Answer:
r = 0.9825; good correlation.
Step-by-step explanation:
One formula for the correlation coefficient is
![r = \dfrac{n\sum{xy} - \sum{x} \sum{y}}{\sqrt{n\left [\sum{x}^{2}-\left (\sum{x}\right )^{2}\right]\left [\sum{y}^{2}-\left (\sum{y}\right )^{2}\right]}}](https://tex.z-dn.net/?f=r%20%3D%20%5Cdfrac%7Bn%5Csum%7Bxy%7D%20-%20%5Csum%7Bx%7D%20%5Csum%7By%7D%7D%7B%5Csqrt%7Bn%5Cleft%20%5B%5Csum%7Bx%7D%5E%7B2%7D-%5Cleft%20%28%5Csum%7Bx%7D%5Cright%20%29%5E%7B2%7D%5Cright%5D%5Cleft%20%5B%5Csum%7By%7D%5E%7B2%7D-%5Cleft%20%28%5Csum%7By%7D%5Cright%20%29%5E%7B2%7D%5Cright%5D%7D%7D)
The calculation is not difficult, but it is tedious.
1. Calculate the intermediate numbers
We can display them in a table.
<u> </u><u>x</u> <u> y </u> <u> xy </u> <u> x² </u> <u> y² </u>
-3 -40 120 9 1600
1 12 12 1 144
5 72 360 25 5184
<u> 7</u> <u>137</u> <u> 959</u> <u>49</u> <u>18769
</u>
Σ = 10 181 1451 84 25697
2. Calculate the correlation coefficient
![r = \dfrac{n\sum{xy} - \sum{x} \sum{y}}{\sqrt{\left [n\sum{x}^{2}-\left (\sum{x}\right )^{2}\right]\left [n\sum{y}^{2}-\left (\sum{y}\right )^{2}\right]}}\\\\= \dfrac{4\times 1451 - 10\times 181}{\sqrt{[4\times 84 - 10^{2}][4\times25697 - 181^{2}]}}\\\\= \dfrac{5804 - 1810}{\sqrt{[336 - 100][102788 - 32761]}}\\\\= \dfrac{3994}{\sqrt{236\times70027}}\\\\= \dfrac{3994}{\sqrt{16526372}}\\\\= \dfrac{3994}{4065}\\\\= \mathbf{0.9825}](https://tex.z-dn.net/?f=r%20%3D%20%5Cdfrac%7Bn%5Csum%7Bxy%7D%20-%20%5Csum%7Bx%7D%20%5Csum%7By%7D%7D%7B%5Csqrt%7B%5Cleft%20%5Bn%5Csum%7Bx%7D%5E%7B2%7D-%5Cleft%20%28%5Csum%7Bx%7D%5Cright%20%29%5E%7B2%7D%5Cright%5D%5Cleft%20%5Bn%5Csum%7By%7D%5E%7B2%7D-%5Cleft%20%28%5Csum%7By%7D%5Cright%20%29%5E%7B2%7D%5Cright%5D%7D%7D%5C%5C%5C%5C%3D%20%5Cdfrac%7B4%5Ctimes%201451%20-%2010%5Ctimes%20181%7D%7B%5Csqrt%7B%5B4%5Ctimes%2084%20-%2010%5E%7B2%7D%5D%5B4%5Ctimes25697%20-%20181%5E%7B2%7D%5D%7D%7D%5C%5C%5C%5C%3D%20%5Cdfrac%7B5804%20-%201810%7D%7B%5Csqrt%7B%5B336%20-%20100%5D%5B102788%20-%2032761%5D%7D%7D%5C%5C%5C%5C%3D%20%5Cdfrac%7B3994%7D%7B%5Csqrt%7B236%5Ctimes70027%7D%7D%5C%5C%5C%5C%3D%20%5Cdfrac%7B3994%7D%7B%5Csqrt%7B16526372%7D%7D%5C%5C%5C%5C%3D%20%5Cdfrac%7B3994%7D%7B4065%7D%5C%5C%5C%5C%3D%20%5Cmathbf%7B0.9825%7D)
The closer the value of r is to +1 or -1, the better the correlation is. The values of x and y are highly correlated.
Answer:
$12159 per year.
Step-by-step explanation:
If I invest $x each year at the simple interest of 7.5%, then the first $x will grow for 35 years, the second $x will grow for 34 years and so on.
So, the total amount that will grow after 35 years by investing $x at the start of each year at the rate of 7.5% simple interest will be given by

= ![35x + \frac{x \times 7.5}{100} [35 + 34 + 33 + ......... + 1]](https://tex.z-dn.net/?f=35x%20%2B%20%5Cfrac%7Bx%20%5Ctimes%207.5%7D%7B100%7D%20%5B35%20%2B%2034%20%2B%2033%20%2B%20.........%20%2B%201%5D)
= ![35x + \frac{x \times 7.5}{100} [\frac{1}{2} (35) (35 + 1)]](https://tex.z-dn.net/?f=35x%20%2B%20%5Cfrac%7Bx%20%5Ctimes%207.5%7D%7B100%7D%20%5B%5Cfrac%7B1%7D%7B2%7D%20%2835%29%20%2835%20%2B%201%29%5D)
{Since sum of n natural numbers is given by
}
= 35x + 47.25x
= 82.25x
Now, given that the final amount will be i million dollars = $1000000
So, 82.25x = 1000000
⇒ x = $12,158. 05 ≈ $12159
Therefore. I have to invest $12159 per year. (Answer)
Since the sum of all probabilities of all all elementary events will always be equal to 1. Furthermore, the probabilities of all mutually exclusive set of events that is part of the entire sample space will always be total of 1.
So in the problem, the answer is 1/8.
1/8 for red + 3/8 for green + 3/8 for yellow + 1/8 for blue = 8/8 or 1.
For this question, you need to understand how to divide fractions.First we line up our fractions appropriately:
4/9 ÷ 4/5 = ? (You want to divide 4/9 by 4/5)
4/9 × 5/4 = ? (Now we use the reciprocal of 4/5 and multiply instead of divide)
4 x 5 = 20 and 9 x 4 = 36. (Cross multiply.)
20/36 = 5/9. (Simplify to lowest terms.)
So, 4/9 divided by 4/5 is 5/9!But 5/9 is more than 4/9, so the answer is 0 :PCorrect me if I'm wrong.
Answer:
Step-by-step explanation:
Triangle proportionality theorem,
