Find, correct to the nearest degree, the three angles of the triangle with the vertices d(0,1,1), e( 2, 4,3) − , and f(1, 2, 1)
Ksju [112]
Well, here's one way to do it at least...
<span>For reference, let 'a' be the side opposite A (segment BC), 'b' be the side opposite B (segment AC) and 'c' be the side opposite C (segment AB). </span>
<span>Let P=(4,0) be the projection of B onto the x-axis. </span>
<span>Let Q=(-3,0) be the projection of C onto the x-axis. </span>
<span>Look at the angle QAC. It has tangent = 5/4 (do you see why?), so angle A is atan(5/4). </span>
<span>Likewise, angle PAB has tangent = 6/3 = 2, so angle PAB is atan(2). </span>
<span>Angle A, then, is 180 - atan(5/4) - atan(2) = 65.225. One down, two to go. </span>
<span>||b|| = sqrt(41) (use Pythagorian Theorum on triangle AQC) </span>
<span>||c|| = sqrt(45) (use Pythagorian Theorum on triangle APB) </span>
<span>Using the Law of Cosines... </span>
<span>||a||^2 = ||b||^2 + ||c||^2 - 2(||b||)(||c||)cos(A) </span>
<span>||a||^2 = 41 + 45 - 2(sqrt(41))(sqrt(45))(.4191) </span>
<span>||a||^2 = 86 - 36 </span>
<span>||a||^2 = 50 </span>
<span>||a|| = sqrt(50) </span>
<span>Now apply the Law of Sines to find the other two angles. </span>
<span>||b|| / sin(B) = ||a|| / sin(A) </span>
<span>sqrt(41) / sin(B) = sqrt(50) / .9080 </span>
<span>(.9080)sqrt(41) / sqrt(50) = sin(B) </span>
<span>.8222 = sin(B) </span>
<span>asin(.8222) = B </span>
<span>55.305 = B </span>
<span>Two down, one to go... </span>
<span>||c|| / sin(C) = ||a|| / sin(A) </span>
<span>sqrt(45) / sin(C) = sqrt(50) / .9080 </span>
<span>(.9080)sqrt(45) / sqrt(50) = sin(C) </span>
<span>.8614 = sin(C) </span>
<span>asin(.8614) = C </span>
<span>59.470 = C </span>
<span>So your three angles are: </span>
<span>A = 65.225 </span>
<span>B = 55.305 </span>
<span>C = 59.470 </span>
Answer:
a. 0.50
Step-by-step explanation:
The standard error of the mean is the standard deviation of the population divided by the square root of the sample size.
In this problem, we have that:
Standard deviation of the population: 6 hours
Sample size: 144
Square root of 144 is 12.
So the standard error of the sample mean is 6/12 = 0.5.
Answer:
Total distance mouse traveled in 3 hours =
of a mile
The mouse traveled the same distance in each hour. So in order to find the distance covered in 1 hour we have to divide the distance covered in 3 hours by 3. This will give us the distance that the mouse traveled in one hour.
So, the distance traveled in one hour will be =
of a mile
The error which Matt made was that he divided only the denominator of the expression by 3, this probably was a calculation error.
Correct conclusion will be: Mouse travel 1/24 of a mile each hour
A` ( 7, 7 )
B ` ( 10.5, 28 )
The slope: m = (28-7) / ( 10.5 - 7 ) = 21 / 3.5 = 6
d ( A` B `) = √ ( 10.5 - 7 )² + ( 28 - 7 )² = √ 3.5² + 21² =
= √ 12.25 + 441 = √ 12.25 ( 1 + 36 ) = 3.5 √37 ( or 3.5 * (37) ^(1/2))
Answer:
C ) m = 6, A`B` = 3.5√37
Answer:
The slope of diagonal PS is -1.
The slope of diagonal QR is 1.
The midpoint of PS is (2, 2).
The midpoint of QR is (2, 2).
Perpendicular and share the same midpoint.